
Traces for Type Soundness

Tim Disney
UC Santa Cruz

Cormac Flanagan
UC Santa Cruz

Abstract
The key idea of trace semantics is that a term can interact with
its enclosing context via various events, such as function calls
and returns. A trace is a sequence of such interaction events. The
meaning of the term is then naturally represented by the set of all
event traces that the term can generate. Trace semantics allows us
to define the meaning of both expressions and types in the same
domain which enables an interesting alternative to subject reduction
for proving type soundness.

This paper uses trace semantics to define the meaning of and
verify type soundness for a sequence of programming languages,
starting with a functional sequential language (the simply typed
lambda calculus), and then extending that proof with subtyping, side
effects, control effects, and concurrency. These proofs are reasonably
short and fairly semantic in structure, focusing on the relationship
between the meanings of each term and its corresponding type. In
particular, we show that the typing and subtyping relations are both
conservative approximations of alternating trace containment.

1. Introduction
Over the past 20 years, the syntactic approach [37] has become
established as the dominant method to proving type soundness.
The flexibility and extensibility of this approach stem from its
exclusive reliance on syntactic methods, in which programs, types,
and intermediate computation states are all represented syntactically,
and the typing and subtyping relations are defined over syntactic
items. The result is an elegant proof technique, but one in which
types remain just pieces of syntax, with no associated semantic
meaning or denotation.

The last two decades have also given birth to a new style
of denotational semantics called game semantics, in which the
interaction between two modules in a system can be considered
a game with alternating moves by the two modules. To date, most
work in this area has focused on proving full abstraction results for
various languages [10, 21, 4, 24, 5, 3, 11, 26] with some study of
higher-order program analyses [2].

This paper attempts to connect these two fields of type systems
and games semantics. The motivation for this work is to open up
an important application domain for game semantics, while at the
same time providing a formal foundation for many intuitions about
the typing and subtyping relations that are left informal under the
syntactic approach.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. . . $5.00

In comparison to the highly polished syntactic proof machinery
developed over the past two decades, we do not claim that the game
semantic approach is strictly better (in the sense of being simpler
or more efficient). Nevertheless, the game semantic approach does
appear to provide different benefits (outlined below), which suggest
this approach merits further study.

Our approach uses traces to formalize our game semantics, and
the starting point for our semantic development is the untyped λ-
calculus. In particular, given a program C[e] in this language, we
can imagine a remote procedure call mechanism that mediates the
interactions between the expression e and its enclosing context C[·]
by appropriately routing function calls and returns from e to its
context and vice-versa. We use the term event to denote a function
call or return message sent from e to its context, or vice versa. Then
the semantics of e can be formalized as a (potentially infinite) set
of traces, denoted JeKk, where each trace is a finite sequence of
such events. The subscript k in JeKk denotes a continuation channel
on which to send the result of e’s computation to the context C.
For simplicity, this discussion assumes e is closed, although our
semantic framework supports open terms.

To incorporate types from the simply typed λ-calculus, we
formalize the meaning of each type A as an analogous set of traces
JAKk, again with respect to a continuation channel k.

Like other denotational semantics, game semantics is compo-
sitional, and so, for example, the meaning Je1 e2Kk of a function
application is defined in terms of the meanings of the direct subex-
pressions e1 and e2. Like operational semantics, game semantics is
fairly syntactic in flavor, primarily dealing with sets of (syntactic)
traces. Thus, in some sense, game semantics is a compositional
syntactic semantics, where the syntax captures behavior (i.e. traces
of interactions) rather than state (as in operational semantics).

Much prior work on game semantics has focused on the full
abstraction problem of showing that the denotational equivalence
and observable equivalence relations coincide [10, 21, 4, 24]. While
clearly important, this full abstraction problem is orthogonal to our
present concerns of using game semantics as a tool for developing,
understanding, and verifying type systems.

By defining the meaning of both expressions and types in the
same domain of trace sets, this approach enables us to capture
the typing judgment ` e : A as an appropriate relation on the
corresponding trace sets JeKk and JAKk. In particular, a trace in
JeKk may contain both send events (which transfer control from e
to its context) and receive events (which transfer control from the
context to e). If e has type A, then JAKk must permit any send event
in JeKk (since any function return value sent by e must be permitted
by its type A; conversely by a contravariant argument JeKk must
contain any receive event in JAKk. Thus, if

` e : A

then the appropriate relation between the corresponding trace sets is
alternating trace containment [6], denoted

JeKk @ JAKk

where JAKk contains (non-strictly) more sends and (non-strictly)
fewer receives than JeKk. Thus, typing conservatively approximates
alternating containment on traces.

Theorem 1. If ` e : A then JeKk @ JAKk

We next consider the subtyping relation A<:B. Again, we can
show that the type B must contain more sends and fewer receives
than A, so subtyping also conservatively approximates alternating
trace containment.

Theorem 2. If A<:B then JAKk @ JBKk

One interesting aspect of trace-based type soundness proofs is
that they are mostly compositional, in that each type rule can be
verified as admissible independent of the other rules in the system.
For example, we verify the admissibility of the function application
rule:

` e1 : A→ B ` e2 : A

` e1 e2 : B

(ignoring the type environment here for simplicity) by proving a
corresponding lemma:

if Je1Kk1 @ JA→ BKk1
and Je2Kk2 @ JAKk2
then Je1 e2Kk @ JBKk

Since Je1 e2Kk is defined compositionally in terms of Je1Kk1 and
Je2Kk2 (with respect to the appropriate channels k1 and k2), this
lemma is independent of the subterms e1 and e2 and depends only
on the semantics of function application and of function types.
Consequently, any extension to the type or term language is safe with
respect to the above rule provided it does not modify the meaning
of function application or function types.

Our experience to date suggests that this approach provides a
helpful semantic foundation for exploring typed programming lan-
guages. In particular, some language extensions can be developed
and proven type sound independently, where the formalism pre-
cludes unintentional cross-cutting interference between language
features.

To illustrate this benefit, this paper uses trace semantics to verify
type soundness of a sequence of programming languages. Section 2
first formalizes a calculus for composing and reasoning about trace
sets. Section 3 illustrates our approach by verifying type soundness
for the simply typed λ-calculus. We then enrich this language
with subtyping (Section 4), first-class continuations (Section 5),
imperative features (Section 6), and concurrent threads (Section 7),
with compositional proofs for all extensions.

In summary, this paper provides the following contributions.

1. It provides a compositional semantic meaning for types and
terms as trace sets.

2. The typing relation (` e : A) naturally corresponds to alternating
trace containment on trace sets (JeKk @ JAKk).

3. The subtyping relation (A<:B) also corresponds to alternating
trace containment on trace sets (JAKk @ JBKk).

4. Our initial soundness proof for the simply typed λ-calculus
scales well to support concurrency, imperative features, and
control effects of the term level, as well as subtyping at the type
level, since the admissibility of each typing rule depends only
on the semantics of types and terms, and is independent of the
other rules in the system.

We conjecture that trace semantics might provide helpful insights
in the development and verification of other program analyses
and type systems. As one example, the unification of typing and
subtyping as alternating trace containment relation provides some

semantic motivation for recent work on pure subtype systems, which
also merge the typing and subtyping relations [22, 23].

2. The Trace Calculus
We start by formalizing the semantic domain of trace sets: see Figure
1. A trace α is a finite sequence of events. Each event is either a
send event x!y, which sends the channel list y to x, or a receive
event x?y, which receives y from x. Note that send events x!y and
receive events x?y both bind the argument list y; these channels are
then in scope in the rest of the trace and can be α-renamed in the
usual fashion. Thus, for example, we consider the traces k!y .y?r
and k!x .x?r to be α-equivalent.

The FS and FR functions identify the free sending and re-
ceiving channels in a trace, respectively. As an example, if α =
x!y .y?z .z!h then we have FS(α) = {x} and FR(α) = ∅.

To provide an initial intuition of how traces capture program
semantics, consider the meaning of the higher-order function
Jλf. f (λx. x)Kk, where the channel k represents the initial contin-
uation for this code fragment. Since this code fragment can interact
with its context in arbitrary ways, it has infinitely many possible
traces, but one possible trace is:

α = k!r .r?fh .f !yh′ .h′?z .h!z′

In this trace:

1. The first event k!r sends a fresh channel r to the context k
providing a shared channel for the context to call this function.

2. Next the event r?fh receives from the context two channels; f ,
which represents the function argument, and h, which represents
the continuation for this call.

3. The event f !yh′ sends to f a channel y′ denoting the identity
function λx. x and a continuation h′.

4. The call to f immediately returns to its continuation h′ via h′?z.

5. Finally, the function λf. f (λx. x) returns to its continuation h,
passing a fresh channel z′. Later message events sent to z′ (if
any) will be forwarded to z via the copycat proxy (as described
in Section 2.4 below).

2.1 Operations on Tracesets
We use the term traceset to denote a prefix-closed set of traces,
and use the metavariables P,Q,R to range over tracesets. We often
write tracesets as sets modulo prefix closure for brevity, and thus
{x? .y!} abbreviates {ε, x?, x? .y!}. Here x? is a receive event that
receives zero arguments. We use the notation π ∈ P to mean that P
contains the single-event trace π. For example, x! ∈ {ε, x!, x! .y?}
but x! 6∈ {ε, y!, y! .x!}.

To define the meaning of expressions (and later types) compo-
sitionally, we present a collection of operations for defining and
composing sets of traces in Figure 1. The constant 1 denotes the
singleton set {ε} containing the empty trace. At an intuitive level, 1
denotes a computation that does nothing (a no-op), while the empty
set ∅ denotes a computation that can never be executed.

The negation operation ¬π swaps send and receives events, and
negation extends in a pointwise manner to traces and tracesets.

The operation π.P prefixes each trace in P with the event π.
For example, x! .{y? .z!} = {x! .y? .z!}. Conversely, the operation
P \π drops an initial event π from each trace in P , and drops traces
in P that do not start with π; this operation yields the empty set if
no trace in P starts with π. Thus,

{z?, x? .y!} \ x? = {y!}
{z?, x? .y!} \ y! = ∅

Figure 1: The Trace Calculus

Grammar:

x, y, g, h, k ∈ Chan
π ∈ Event ::= x!y | x?y
α ∈ Trace ::= π1 . · · · .πn
P,Q,R ∈ TraceSet = 2Trace

FV(α) = FS(α) ∪ FR(α)
BV(x!y) = BV(x?y) = {y}

FS(ε) = ∅
FS(x?y .α) = FS(α) \ {y}
FS(x!y .α) = {x} ∪ FS(α) \ {y}

FR(ε) = ∅
FR(x?y .α) = {x} ∪ FR(α) \ {y}
FR(x!y .α) = FR(α) \ {y}

Traceset Operations and Constants:

1 = {ε}
¬(x!y) = x?y
¬(x?y) = x!y
π .P = {ε, π .α | α ∈ P}
P \ π = {α | π .α ∈ P}
νx.P = {α ∈ P | ∀x ∈ x. x 6∈ FV(α)}
P ∪Q = {α | α ∈ P or α ∈ Q}
P ×Q =

⋃
π π .((P \ π ×Q) ∪ (P ×Q \ π))

P ⊗ Q =
⋃
π π .((P \ π ⊗ Q) ∪ (P ⊗ Q \ π))

∪
⋃
π νx.((P \ π) ⊗ (Q \ ¬π))

where x = BV(π)⋃n
i Pi = P1 ∪ P2 ∪ · · · ∪ Pn∏n
i Pi = P1 × P2 × · · · × Pn∐n
i Pi = P1 ⊗ P2 ⊗ · · · ⊗ Pn
Pn =

∏n
1 P

∗P =
⋃∞
i=1

∏i
j=1 P

j

Properties:

(TraceSet ,∪,×, ∅, 1) is a commutative semiring
1. P ×Q = Q× P
2. P × (Q×R) = (P ×Q)×R
3. P × 1 = P
4. P × (Q ∪R) = (P ×Q) ∪ (P ×R)
5. P × ∅ = ∅

(TraceSet ,∪, ⊗ , ∅, 1) is a commutative semiring
6. P ⊗ Q = Q ⊗ P
7. P ⊗ (Q ⊗ R) = (P ⊗ Q) ⊗ R
8. P ⊗ 1 = P
9. P ⊗ (Q ∪R) = (P ⊗ Q) ∪ (P ⊗ R)

10. P ⊗ ∅ = ∅
¬ distributes over ∪,×, ⊗ and is an involution

11. ¬(P ∪Q) = ¬P ∪ ¬Q
12. ¬(P ×Q) = ¬P × ¬Q
13. ¬(P ⊗ Q) = ¬P ⊗ ¬Q
14. ¬¬P = P
∗ distributes over × and is idempotent

15. ∗(P ×Q) = ∗P × ∗Q
16. ∗ ∗ P = ∗P

@ is reflexive and trasitive; ∪,× and ∗ are monotonic; ¬ is anti-monotonic
17. P @ P
18. (P @ Q) ∧ (Q @ R)⇒ P @ R
19. P @ P ′ ⇒ (P ∪Q) @ (P ′ ∪Q)
20. P @ P ′ ⇒ (P ×Q) @ (P ′ ×Q)
21. P @ Q⇒ ∗P @ ∗Q
22. P @ Q⇒ ¬Q @ ¬P

Other properties:
23. (P ∪Q) \ π = P \ π ∪Q \ π
24. (P ×Q) \ π = (P \ π ×Q) ∪ (P ×Q \ π)
25. (P ⊗ Q) \ π = (P \ π ⊗ Q) ∪ (P ⊗ Q \ π)
26. (∗P) \ π = ∗P × (P \ π)

27. π .∅ = ∅
28. P \ π = ∅ for π 6∈ P
29. P ∪ ∅ = P
30. νx.∅ = ∅

31. π .1 = π
32. P ∪ 1 = P for P 6= ∅
33. νx.1 = 1
34. ¬1 = 1

35. ∗P = ∗P × P
36. ∗P = ∗P × ∗P

37. P @ Q⇔ π.P @ π.Q
38. (P @ Q) ∧ (P @ R)⇒ P @ (Q ∪R)
39. π .(S ×Q) @ S × π .Q
40. S @ ∗S
41. P @ Q⇒ P @ Q× S

if FV(P) ∩ FV(S) = ∅

In 39, 40, 41 assume no trace in S starts
with a receive event

Note that, by sharing trace prefixes, a traceset P can be viewed as a
"trace tree", in which every edge is labelled with an event, and the
set of paths from the root to nodes in the tree captures the traces in
P . From this perspective, P \ π corresponds to navigating down the
π-labelled edge from the root of the trace tree for P .

The restriction operation νx .P denotes the traces in P where
none of the channels in x appear free. Intuitively, this operation in-
troduces fresh channels and avoids channel collisions. For example,

νz.{z!, x!z .z?, y! .z?} = {x!z .z?, y!}

traces with free occurrences of z are removed.
The operation P ∪ Q performs set union on tracesets, and⋃n
i=1 Pi abbreviates the n-ary union P1 ∪ · · · ∪ Pn.
The operation P ×Q denotes the non-deterministic interleaving

of traces from P and Q. Thus,

{z!} × {x? .y!} = {z! .x? .y!, x? .z! .y!, x? .y! .z!}

To facilitate proofs, this operation is defined compositionally. For
each event π, P ×Q contains traces starting with π and followed by
traces in (P \π)×Q or in P × (Q \π) (i.e. it pulls the initial event
π from either P or Q). Note that if π 6∈ P (i.e. the single-event
trace π does not occur in P) then P \ π and P \ π ×Q are both ∅,
and similarly if π 6∈ Q.

The operation P ⊗ Q generalizes P × Q by also permitting
communication between P and Q, where P may transmit an event
y!x, Q may receive the corresponding event y?x (or vice-versa),
and computation proceeds with νx .((P \ y!x) ⊗ (Q \ y?x)). Note
we assume that implicit α-renaming is used to match up the bound
channels in the send event y!x of P with those in the receive event
y?x of Q. For example,

νy.({y!z} ⊗ {y?x .x!}) = νy.({y!z} ⊗ {y?z .z!}) = {z!}

The n-ary operations
∏n
i Pi and

∐n
i Pi then generalize inter-

leaving × and parallel composition ⊗ , respectively. The operations
Pn and ∗P denote the interleaving of n or arbitrarily many copies
of P , respectively.

By convention νx binds as far to the right as possible while ×,
∪, π.P , P \ π, ∗ and ¬ bind with decreasing proximity. So for
example,

νx. ∗ π .P ×Q ∪R = νx.(((∗(π .P))×Q) ∪R)

These operations on tracesets are closely related to the π-
calculus [30], but with the significant restriction that send events
only transmit fresh channels (i.e. in the trace y!x .α the channel x is
bound in α), which yields a simpler semantic structure. Moreover,
tracesets are (potentially infinite) sets of traces, rather than finite
pieces of syntax with an associated evaluation semantics.

2.2 The Alternating Trace Containment Relation
As mentioned in the introduction, tracesets are naturally ordered
according to the alternating trace containment relation P @ Q,
which holds provided every send in P is also in Q, and conversely
every receive in Q is also in P . More specifically, if P includes
a trace α .π where π is a send, then if Q includes α then Q must
also include α .π (and vice versa). This relation allows a program
component with traceset P to be used safely in a context that expects
a traceset Q.

Furthermore, after sending or receiving matching events, P and
Q must continue to satisfy this relation.

To facilitate inductive proofs, we first define the indexed alter-
nating trace containment relation P @n Q, which holds if n = 0
(the base case), or if n > 0 and:

1. For all send events π ∈ P , then π ∈ Q and P \ π @n−1 Q \ π
2. For all receive events π ∈ Q , then π ∈ P and P \π @n−1 Q\π

We then define P @ Q to hold if and only if P @n Q holds for
all n. Thus, for example:

{x? .z?, y?} @ {x?, y?} @ {x?} @ 1 @ {x!} @ {x! .y!}

2.3 The Algebra of Traces
These operations on tracesets enjoy a rich algebraic structure, as
described in Figure 1. In particular, (TraceSet ,∪,×, ∅, 1) and
(TraceSet ,∪, ⊗ , ∅, 1) are both commutative semirings. Moreover,
the operations ∪,×, and ⊗ are monotonic with regard to @, and so
for example if P @ Q then P ×R @ Q×R.

Unfortunately, monotonicity does not extend to parallel compo-
sition. As a counterexample, consider

P = 1
Q = {x!}
R = {x? .y?}

Then,

P ⊗ R = R 6@ Q ⊗ R = {x! .x? .y?, x? .x! .y?, x? .y? .x!, y?}

as the right side includes the receive event y? that is not on the left.
Thus, the extra send x! in Q exposes an additional receive y? in
Q ⊗ R that is not in P ⊗ R.

Instead, we develop a Compositional Reasoning Lemma for
a parallel composition νx.(P ⊗ Q) that requires specifying the
protocol R and the channel x by which P communicates to Q. If P
satisfies the specification P ′ ×R and Q satisfies the specification
Q′ × ¬R, then the parallel composition νx.(P ⊗ Q) satisfies
the interleaved specification P ′ × Q′. We assume that P and Q
communicate only via the restricted channels x, where R mentions
only x but P ′ and Q′ do not mention x.

Lemma 1 (Compositional Reasoning). Suppose:

P @ P ′ ×R
Q @ Q′ × ¬R

FV(Q′) ∩ x = ∅
FV(P ′) ∩ x = ∅

FV(R) ⊆ x
FS(P) ∩ FR(Q) ⊆ x
FR(P) ∩ FS(Q) ⊆ x

Then:

νx.(P ⊗ Q) @ P ′ ×Q′

Proof. See appendix.

As we will see, this lemma plays a critical role in our proofs.

2.4 Copycat Sends
One central choice in our design is that a send event always transmits
fresh channels. For example, in the trace k?y .x!y, the y in x!y is
distinct from the y in k?y. This choice simplifies some parts of our
development, but does require that we set up a mechanism to copy
behavior from an existing channel to a fresh channel. In particular
the copycat send abbreviation x!!y sends out a copy of y by:

1. First, sending a fresh channel y′ (the copy of y) along x.

2. Receiving on y′ some (0, 1, or more) channels z.

3. A fresh copy z′ of the channels z is then passed along to the
original y, where |z′| = |z|.

4. Any further communication is appropriately copied in the same
manner.

To precisely define how the copycat send works we introduce
a bijection θ : Chan → Chan that maps a channel to its copy. We
can then define the copycat send abbreviation x!!y that transmits (a
copy θy1...n = θy1 · · · θyn of) existing channels y on channel x.

x!!y
def
= x!θy . ∗ (

⋃
y∈y

θy?z .y!!z)

The key property of a copycat is that is exhibits the same
behavior on both its sides, since it simply copies events (with
appropriate renaming) from one side to the other. Hence, if P is an
appropriate specification for the behavior of one side, then ¬θP is a
corresponding specification for the other side’s behavior, where θ
performs appropriate channel renamings and the negation operation
(¬) changes receives on one side to sends on the other side, and
vice-versa.

One caveat is that since the copycat may buffer events, we
require that the specification P is invariant under buffering, which
essentially means it does not matter in what order we remove events
of the same direction (i.e. sends vs receives). More precisely, a
traceset P is well-formed if for all events π1 and π2 of the same
direction, it is the case that P \ π1 \ π2 = P \ π2 \ π1 and P \ π1

is also well-formed.
The abbreviation x!!y satisfies the copycat lemma: for any

well-formed specification P over y and any mapping θ from y
to fresh channels, the abbreviation x!!y satisfies the specification
x!θy .(P × ¬θP).

Lemma 2 (Copycats Preserve Specifications). If P is well-formed
and FR(P) = ∅ and FS(P) ⊆ y then:

x!!y @ x!θy .(P × ¬θP)

Proof. See appendix

3. Type Soundness for the Simply Typed Lambda
Calculus

Based on the trace calculus properties and lemmas of the previous
section, we are now in a position to study trace-based soundness
proofs for a range of programming languages, starting with the
simply typed lambda calculus.

3.1 STLC Syntax and Semantics
We summarize the STLC syntax as follows:

e ∈ Expr ::= x | λx. e | e e | unit
A,B ∈ Type ::= Top | Unit | A→ B

E ∈ Env ::= ∅ | E, x : A

We define the meaning JeKk of each expression e with respect to
a channel k as the following tracesets:

J·K· : Expr× Chan→ Traceset
JxKk

def
= k!!x

Jλx. eKk
def
= k!a . ∗ (a?xh .JeKh) a, h 6∈ FV(e)

Je1 e2Kk
def
= νk1.(Je1Kk1 k1, k2, x1, x2 6∈ FV(e1, e2)

⊗ ∗k1?x1 .νk2.(Je2Kk2
⊗ ∗ k2?x2 .x1!!x2k))

JunitKk
def
= k!a . ∗ (a?x .wrong!)

The traceset JxKk simply sends a copy of x to k using a copycat
send. We unify variables in programs with channels in traces, and
so the terms variable and channel are synonyms.

The traceset Jλx. eKk sends to k a fresh channel a, and then
repeatedly receives on a an argument x and calling continuation h,
and then evaluates e sending the result to h.

The traceset Je1 e2Kk evaluates e1 and receives the result along
channel k1 in x1, evaluates e2 and receives the result in x2, and then
sends to x1 the argument-continuation pair x2k. (The replicated
receives ∗k1?x1 . . . and ∗k2?x2 . . . permit subexpressions to return
multiple times, to facilitate first-class continuations in Section 5.)

We use the expression unit to represent a program “going wrong”
if unit is ever applied to a term. The traceset JunitKk sends a channel
a to its continuation, but if it ever receives an event on a it performs
a send on the channel wrong, signalling that an error occurred. Thus,
for example the following program trivially goes wrong.

J(unit unit)Kk = {wrong!}
We now address the meaning of types and type environments,

starting with the meaning JAKk of a type A with respect to a
continuation k, which simply sends a fresh channel a to k, and
then stands ready to receive operations on a according to the type
A.

J·K· : Type× Chan→ Traceset
JAKk

def
= ∗k!a .¬Ja : AK

Next, we define the meaning of a single-entry environment
Jx : AK by case analysis on A:

J·K : Env→ Traceset
Jx : A→ BK def

= ∗x!yk .(¬Jy : AK × ¬JBKk)

Jx : TopK def
= 1

Ju : UnitK def
= 1

If the environment contains a function binding x, then code in that
environment can repeatedly send argument-continuation pairs yk to
x, after which the code should be ready to receive (via ¬) B-values
on k, and also receive (again via ¬) requests on y according to its
type A. Note that, since × denotes arbitrary interleaving, requests
on y may be received both before and after returns on k.

Our type language includes Top, since there are no operations
on values of this type, an environment binding of type Top has the
no-op trace 1.

In addition, to prevent well-typed programs from going wrong,
the type Unit has no operations and thus is the no-op trace 1.

Note that we use the channel wrong only in the meaning of
terms, not in types. Thus, if JeKk @ JAKk, then since wrong does
not appear in JAKk, the term e is guaranteed not to go wrong (i.e.
send to the channel wrong) provided it is used in accordance with
its type specification A. Our type soundness theorem in the next
section will prove that well-typed terms behave according to their
types and thus do not go wrong.

Note that our traceset meanings for Top and Unit coincide,
(JTopKk = JUnitKk = ∗k!a), since no operations can be performed
on a value of either static type. Despite this traceset equivalence,
these two types are still distinct and we will treat them differently
when we extend the language with subtyping in section 4. For
example, Unit <: Top but not vice-versa. Thus, these two types
play different useful roles in the type system.

Finally, the meaning of a type environment with multiple bind-
ings is the interleaving of the meanings of each individual binding:

Jx1 : A1, · · · , xn : AnK def
= Jx1 : A1K × · · · × Jxn : AnK

3.2 STLC Typing and Type Soundness
If an expression e has type A, then the traceset JeKk should generate
at most those output events permitted by JAKk, and should receive
at least those input events in JAKk. Thus, ` e : A must imply a
corresponding alternating trace containment relation JeKk @ JAKk
on tracesets.

If e contains free variables with types defined by an environment
E, then e can also interact with its environment according to the

Figure 2: Typing Rules for STLC

x : A ∈ E
E ` x : A

[T-VAR]

E, x : A ` e : B

E ` λx. e : A→ B
[T-ABS]

E ` unit : Unit
[T-UNIT]

E ` e1 : A→ B E ` e2 : A

E ` e1 e2 : B
[T-APP]

traceset specification JEK. In this case we have that E ` e : A must
imply JeKk @ JAKk × JEK

We prove this traceset correspondence property by induction on
the typing derivation E ` e : A. For each typing rule, we show that
if this traceset correspondence holds for the antecedents in the rule
then it also holds for the conclusion of the rule; in this case we say
the rule is admissible.

Theorem 3 (Type Soundness). If E ` e : A where each rule in this
derivation is admissible, then JeKk @ JAKk × JEK.

Proof. By induction on the derivation E ` e : A.

Figure 2 summarizes the standard STLC typing rules, and the
following lemma verifies that all these rules are admissible.

Lemma 3. The STLC typing rules are admissible.

Proof.

• Case [T-VAR] where x : A ∈ E and E ` x : A. We show
JxKk @ JAKk × JEK.

JxKk
= k!!x
@ k!θx .(Jx : AK × ¬Jθx : AK) (Lem 6)
@ Jx : AK × k!θx .¬Jθx : AK (Prop 39)
@ Jx : AK × ∗k!θx .¬Jθx : AK (Prop 40)
= Jx : AK × JAKk (def)
@ Jx : AK × JAKk × JE \ (x : A)K (Prop 41)
= JAKk × JEK (since x : A ∈ E)

• Case [T-UNIT]

JunitKk = k!a . ∗ (a?x .wrong!)
@ ∗k!a .1 (Prop 40)
= JUnitKk (def)
@ JUnitKk × JEK (Prop 41)

• Case [T-ABS] where E ` λx. e : A → B via antecedent
E, x : A ` e : B. We show Jλx. eKk @ JA→ BKk × JEK.

Jλx. eKk
= k!a . ∗ (a?xk′ .JeKk′)
@ k!a . ∗ (a?xk′ .(JBKk′ × JE, x : AK)) (*)
= k!a . ∗ (a?xk′ .(JBKk′ × Jx : AK × JEK))
@ k!a . ∗ (a?xk′ .(JBKk′ × Jx : AK)× JEK) (Prop 39)
@ k!a .(∗a?xk′ .(JBKk′ × Jx : AK)× ∗JEK) (Prop 15)
= k!a .(∗a?xk′ .(JBKk′ × Jx : AK)× JEK) (Prop 16)
@ k!a . ∗ (a?xk′ .(JBKk′ × Jx : AK))× JEK (Prop 39)
@ ∗k!a . ∗ (a?xk′ .(JBKk′ × Jx : AK))× JEK (Prop 40)
= JA→ BKk × JEK (def)

The (*) step is justified because by induction JeKk′ @ JBKk′ ×
JE, x : AK and both prefix and replication are monotonic
(Properties 37 and 21).

• Case [T-APP] where E ` e1 e2 : B via antecedents E ` e1 :
A→ B and E ` e2 : A. We begin by letting:

Je1 e2Kk = νk1.L1 ⊗ R1

L1 = Je1Kk1
R1 = ∗k1?x1 .νk2.(L2 ⊗ R2)

L2 = Je2Kk2
R2 = ∗k2?x2 .x1!!x2k

By induction L2 @ JAKk2 × JEK and by Lemma 6 with
P = Jx2 : AK × JBKk we have:

R2

@ ∗k2?x2 .(P × ¬θP)
@ ∗k2?x2 .(P × x1!θx2θk .(¬θP)) (Prop 39)
@ ∗k2?x2 .(P × ∗x1!θx2θk .(¬θP)) (Prop 40)
= ∗k2?x2 .(Jx2 : AK × JBKk × Jx1 : A→ BK)
@ (∗k2?x2 .Jx2 : AK)× ∗JBKk × ∗Jx1 : A→ BK (Prop 39)
= (∗k2?x2 .Jx2 : AK)× JBKk × Jx1 : A→ BK (Prop 16)
= ¬(∗k2!x2 .¬Jx2 : AK)× JBKk × Jx1 : A→ BK (Prop 14)
= ¬JAKk2 × Jx1 : A→ BK × JBKk

By Lemma 1 νk2.(L2 ⊗ R2) @ Jx1 : A→ BK× JBKk× JEK.
So:

R1

@ ∗k1?x1 .(Jx1 : A→ BK × JBKk × JEK)
@ (∗k1?x1 .Jx1 : A→ BK)× ∗JBKk × ∗JEK (Prop 39)
= (∗k1?x1 .Jx1 : A→ BK)× JBKk × JEK (Prop 16)
= ¬(∗k1!x1 .¬Jx1 : A→ BK)× JBKk × JEK (Prop 14)
= ¬JA→ BKk1 × JBKk × JEK

By induction L1 @ JA→ BKk1 × JEK so by Lemma 1 we have
Je1 e2Kk @ JBKk × JEK.

This trace-based proof has a fairly “semantic” proof structure
that mostly focuses on the syntactic representation of behavior, in
contrast to traditional subject reduction proofs, which focus on the
syntactic representation of program state. This trace-based proof
does depend on the various lemmas and properties of the trace
calculus, but those results are not language-specific and so can be
reused in a variety of soundness proofs.

Having developed a type soundness proof for STLC, we next
explore how well this proof support extensions to the language or
type system.

Figure 3: Subtyping rules

A<:A
[S-REFL]

A<:B B <: C

A<: C
[S-TRANS]

A<: Top
[S-TOP]

B1 <:A1 A2 <:B2

A1 → A2 <:B1 → B2
[S-ARROW]

4. Type Soundness for Subtyping
As our first extension, we enrich the type system with subtyping by
adding the subsumption rule:

E ` e : B B <:A

E ` e : A
[T-SUB]

along with the standard subtyping rules defined in Figure 3. As men-
tioned in the introduction, subtyping conservatively approximates
the alternating trace containment relation.

Lemma 4 (Subtyping Implies Alternating Trace Containment). If
A<:B then JAKk @ JBKk.

Proof. By induction on the subtyping derivation.

• [S-REFL] and [S-TRANS] follow from Properties 17 and 18.
• Case A<: Top via [S-TOP]. Directly from the definition of Top.
• Case A1 → A2 <:B1 → B2 via [S-ARROW].

From the induction hypothesis we have JB1Kk @ JA1Kk and
JA2Kk @ JB2Kk.

JA1 → A2Kk
= ∗k!x .¬Jx : A1 → A2K
= ∗k!x . ∗ x?ah .(Ja : A1K × JA2Kh)
@ ∗k!x . ∗ x?ah .(Ja : A1K × JB2Kh) (IH, 37, 20, 21)
= ∗k!x . ∗ ¬x!ah .(¬Ja : A1K × ¬JB2Kh) (Prop 14)
@ ∗k!x . ∗ ¬x!ah .(¬Ja : B1K × ¬JB2Kh) (IH, Prop 22)
= ∗k!x .¬Jx : B1 → B2K
= JB1 → B2Kk

Since subtyping implies alternating trace containment, it is
straightforward to show that the [T-SUB] rule is admissible and
thus that STLC with subtyping is still sound.

Theorem 4. The rule [T-SUB] is admissible.

Proof. SupposeE ` e : A via [T-SUB] fromE ` e : B andB<:A.
By Lemma 4 JBKk @ JAKk and by assumption JeKk @ JBKk×JEK.
Thus by Property 20 we get JeKk @ JAKk × JEK.

5. Type Soundness for call/cc
We add control-effects to the language in the form of first-class
continuations.

e ::= . . . | call/cc
The operation (call/cc f) calls the function f passing the current
continuation k as an argument. The function f may either return a

value of some type A or may call k passing an argument of type A;
in either case call/cc returns a value of type A to its continuation.
Thus, the type rule for call/cc is as follows, where the unconstrained
type B indicates that the continuation function k never returns.

E ` call/cc : ((A→ B)→ A)→ A
[T-CALL/CC]

The semantics for call/cc receives any call/cc invocation a?fh
and immediately calls f via f !gh′ passing a function g and a
continuation h′. Values x sent to g or h′ are then copycat sent
to the original continuation h:

Jcall/ccKk
def
= k!a . ∗ (a?fh .f !gh′ .(∗ (g?xk′ .h!!x)

× ∗ (h′?x .h!!x)))

Theorem 5. The rule [T-CALL/CC] is admissible.

Proof. By Lemma 6 with P = Jx : AK:

h!!x
@ h!θx .(Jx : AK × ¬Jθx : AK)
@ Jx : AK × h!θx .¬Jθx : AK (Prop 39)
@ Jx : AK × ∗h!θx .¬Jθx : AK (Prop 40)
= Jx : AK × JAKh (*)
@ Jx : AK × JAKh × JBKk′ (Prop 41, **)

From (**) and Prop 37:

∗g?xk′ .h!!x
@ ∗g?xk′ .(Jx : AK × JAKh × JBKk′)
@ ∗g?xk′ .(Jx : AK × JBKk′)× ∗JAKh (Prop 39)
= ¬Jg : A→ BK × ∗JAKh
= ¬Jg : A→ BK × JAKh (Prop 16)

From (*) and Prop 37:

∗h′?x .h!!x
@ ∗h′?x .(Jx : AK × JAKh)
@ ∗h′?x .Jx : AK × ∗JAKh (Prop 39)
= ¬JAKh′ × ∗JAKh
= ¬JAKh′ × JAKh (Prop 16)

So we have:
f !gh′ .(∗(g?xk′ .h!!x)× ∗(h′?x .h!!x))

@ f !gh′ .(¬Jg : A→ BK × JAKh × JAKh × ¬JAKh′)
= f !gh′ .(¬Jg : A→ BK × ¬JAKh′ × JAKh)) (Prop 36)
@ f !gh′ .(¬Jg : A→ BK × ¬JAKh′)× JAKh (Prop 39)
@ ∗f !gh′ .(¬Jg : A→ BK × ¬JAKh′)× JAKh (Prop 40)
= Jf : (A→ B)→ AK × JAKh

Thus:
Jcall/ccKk

@ k!a . ∗ a?fh .(Jf : (A→ B)→ AK × JAKh)
@ ∗k!a . ∗ a?fh .(Jf : (A→ B)→ AK × JAKh) (Prop 40)
= J((A→ B)→ A)→ AKk
@ J((A→ B)→ A)→ AKk × JEK (Prop 41)

6. Type Soundness for Reference Cells
We next introduce side-effects, in the form of mutable, dynamically
allocated reference cells.

e ::= . . . | ref

We take an “interface-oriented” view to reference cells, as proposed
by Reynolds [35], whereby a reference cell of type Ref C is encoded
as a pair of a getter function (of type Unit→ C) and a setter function
(of type C → Unit) for reading and updating the reference cell,

respectively. For simplicity, we Church encode pairs so the full type
of a reference cell is:

Ref C = Pair (Unit→ C) (C → Unit)
= ((Unit→ C)→ (C → Unit)→ C)→ C

The new primitive operation ref is a function that takes a value of
type C and returns a new reference cell of type Ref C:

E ` ref : C → Ref C
[T-REF]

To help use these interface-oriented reference cells, we introduce
the abbreviations:

let x = e1 in e2
def
= (λx. e2) e1

e1; e2
def
= (λx. e2) e1 x 6∈ FV(e2)

!e
def
= e (λgs. g unit)

e1 := e2
def
= e1 (λgs. let t = e2 in s t; t)

Thus, for example, the following code fragment yields the expected
behavior:

let r = ref x
r := y
!r

As a starting point for defining the semantics of ref, we first
define a reference cell traceset Rx that can receive and process
events on the channels get and set .

Rx = get?uk .(k!!x×Rx)

∪ set?yk .(k!u×Ry)

The event get?uk causes Rx to copycat send x to the continuation
k, and then continue behaving as Rx. The event set?yk causes
Rx to send a dummy unit value to k, and continue as Ry so that
subsequent get events receive y rather than x.

The traceset of ref then essentially wraps Rx in the appropriate
interface.

JrefKk
def
= k!a . ∗ (a?xh .h!p .νset , get .

(Rx| ∗ p?f1k1 .νk2 .(f1!!get , k2
| ∗ k2?g .g!!set , k1)))

This traceset sends a to the ref continuation and then repeatedly
receives requests a?xh to create a new reference cell with an initial
value of x. It returns a channel p (of type Ref C) to h, and initializes
a traceset Rx, with channels get and set , to record the current
value of the reference cell. When p receives a function f1 of type
(Unit→ C)→ (C → Unit)→ C, it simply sends get and set to
f1.

The following lemma shows that the tracesetRx is approximated
by the types of the exported get and set functions, and of the
imported variable x.

Lemma 5 (Reference Cell Specification).

Rx @ ¬Jget : Unit→ C, set : C → UnitK × Jx : CK

Proof. Let RHS = ¬Jget : Unit→ C, set : C → UnitK×Jx : CK.
We prove by induction on n that

Rx @n RHS

Note that there are no sends in Rx. We have two receive events in
RHS to consider:

• get?uk ∈ RHS. We have:

Rx \ get?uk
= (k!!x×Rx)
@ k!x′ .(Jx : CK × ¬Jx′ : CK)×Rx (Lem 6)
@ ∗k!x′ .¬Jx′ : CK ×Rx

RHS \ get?uk
= RHS× Ju : UnitK × JCKk
= RHS× ∗k!x′ .¬Jx′ : CK

Since, by inductionRx @n−1 RHS we haveRx\get?uk @n−1

RHS \ get?uk.
• set?yk ∈ RHS. We have:

Rx \ set?yk = k!u×Ry
@ ∗k!u×Ry

RHS \ set?yk = RHS× Jy : CK × JUnitKk
= RHS× Jy : CK × ∗k!u .¬Ju : UnitK
= RHS× Jy : CK × ∗k!u

Since, by induction Ry @n−1 ¬Jget : Unit → C, set : C →
UnitK × Jy : CK we have Rx \ π @n−1 RHS \ π

With this lemma we show that the type rule for reference cells is
admissible.

Theorem 6. The [T-REF] rule is admissible.

Proof. Let P = Jget : Unit → CK × J(C → Unit) → CKk2 .
Then:

f1!!get , k2
@ f1!θget , θk2 .(P × ¬θP)
@ ∗f1!θget , θk2 .(P × ¬θP)
@ Jf1 : ((Unit→ C)→ (C → Unit)→ C)K
×Jget : Unit→ CK × J(C → Unit)→ CKk2

Let Q = Jset : C → UnitK × JCKk1 . Then:

g!!set , k1
@ g!θset , θk1 .(Q× ¬θQ)
@ ∗g!θset , θk1 .(Q× ¬θQ)
@ Jg : (C → Unit)→ CK × Jset : C → UnitK × JCKk1

∗k2?g .g!!set , k1
@ ∗k2?g .(Jset : C → UnitK × JCKk1 × Jg : (C → Unit)→ CK)
@ ¬J(C → Unit)→ CKk2 × Jset : C → UnitK × JCKk1

From this we have:
∗p?f1k1 .νk2.(f1!!get , k2) ⊗ (∗k2?g .g!!set , k1)

@ ∗p?f1k1 .(Jget : Unit→ CK × Jset : C → UnitK × JCKk1
×Jf1 : ((Unit→ C)→ (C → Unit)→ C)K)

@ ¬Jp : Ref CK × Jget : Unit→ C, set : C → UnitK

By Lemma 5, Rx @ Jget : Unit→ C, set : C → UnitK× Jx : CK.
Thus:

JrefKk
@ k!a . ∗ (a?xh .h!p .(Jx : CK × ¬Jp : Ref CK)) (Lem 1)
@ k!a . ∗ (a?xh.(Jx : CK × h!p .¬Jp : Ref CK))
@ k!a . ∗ (a?xh .(Jx : CK × JRef CKh))
= k!a .Ja : C → Ref CK
@ ∗k!a .Ja : C → Ref CK
= JC → Ref CKk
@ JC → Ref CKk × JEK

7. Type Soundness for Fork
Our final language extension adds multiple concurrent threads, via
an operation (fork f) that evaluates the thunk f in a new thread
of control. As we will see, even though concurrency (like side-
effects) is a significant language extension, it requires only local
extensions to the language semantics. The syntactic extension and
corresponding type rule for fork are straightforward:

e ::= . . . | fork

E ` fork : (Unit→ Unit)→ Unit
[T-FORK]

Rather surprisingly, extending the language semantics with concur-
rency is also straightforward:

JforkKk
def
= k!a . ∗ a?fh .h!u .f !uh .h?y .1

Here, the channel a (representing the fork value) is immediately
returned to fork’s continuation. When a later receives a fork request
a?fh, it immediately returns a unit channel u to the continuation
h, but also calls the given thunk f . Thus, the two consecutive
send events performed by fork are sufficient to initiate concurrent
evaluation. Finally, if f later returns via h?y its result is discarded
and its thread is terminated.

We can use reference cells to implement inter-thread synchro-
nization primitives such as semaphores, since read and write oper-
ations on reference cells execute atomically. The following proof
shows that this language extension with concurrency preserves type
soundness.

Theorem 7. The rule [T-FORK] is admissible.

Proof.

JforkKk = k!a . ∗ a?xh .h!u .x!uh .h?y .1
@ k!a . ∗ a?xh .h!u .x!uh .(¬Ju : UnitK × ¬JUnitKh)
@ k!a . ∗ a?xh .h!u .Jx : Unit→ UnitK
@ k!a . ∗ a?xh .h!u .(Jx : Unit→ UnitK × ¬Ju : UnitK)
@ k!a . ∗ a?xh .(Jx : Unit→ UnitK × h!u .¬Ju : UnitK)
@ k!a . ∗ a?xh .(Jx : Unit→ UnitK × ∗h!u .¬Ju : UnitK)
= k!a . ∗ a?xh .(Jx : Unit→ UnitK × JUnitKh)
@ J(Unit→ Unit)→ UnitKk × JEK

8. Related and Future Work
Wright and Felleisen [37] introduced subject reduction as a tech-
nique for proving soundness of type systems by showing that evalu-
ation preserves typing: if a program state S is well-typed ` S and
S evaluates to S′ (written S → S′) then S′ is also well-typed ` S′.
This proof technique has proven highly flexible, in large part due to
the global nature of the evaluation relation→, which can observe or
mutate any part of the program state. For example, side-effects and
control-effects manipulate the global store and evaluation context,
respectively [17, 18, 16].

Before subject reduction, many type soundness proofs were
based on denotational semantics [32, 12, 1, 13, 15], typically with
different domain equations or different proof techniques. Even when
two soundness proofs addressed extensions of a common language,
it was not clear whether or how different proofs could be merged to
yield a proof for the combined system. By using the semantic frame-
work of rewriting-based operational semantics, subject reduction
provided a common proof structure that could accommodate a wide
range of languages and type systems. This paper takes this work
one step further—by formalizing types (A), terms (e), and typing
judgments (` e : A) all in the common framework of tracesets, the
admissibility of each typing rule can now be verified independently.

Thus, we adapt the ideas of subject reduction to focus on syntactic
representations of behavior (formalized as tracesets) rather than on
syntactic representations of program states.

Much prior work has studied the denotational semantics of
higher-order languages, often with the goal of developing fully
abstract denotational semantics [10, 21], in which observable
equivalence implies denotational equivalence. Game semantics has
emerged as an appealing foundation for developing fully abstract de-
notational models. For example, fully abstract game semantics have
been developed for PCF [4, 24] or for languages with features such
as call-by-value [5], general references [3], and exceptions [11, 26]
to name just a few. Game semantics has also been used as a founda-
tion for language design [28, 36]. Compositional game semantics
also facilitate compositional verification [2].

Traces have also been used to model parallel systems [20, 8]
and to verify properties such as race-freedom [9] for first-order
languages.

As mentioned earlier, our trace calculus notably resembles the π-
calculus [29, 34, 31], but with some differences. The trace calculus
consists of a collection of operators and relations over tracesets,
with associated axioms, rather than syntactic constructors. Moreover,
traces support negation since send and receive events both bind their
argument channels, which allow us to express contravariance in
types as negation on tracesets. Nonetheless, this connection deserves
further exploration, and perhaps existing results from the π-calculus
could facilitate or simplify our type soundness proofs.

A number of type systems have been developed for the π-
calculus [33, 14, 25, 27]. For our purposes, tracesets themselves
are sufficient both for describing implementations (e.g. JeKk) and
also specifications (e.g. JAKk), and thus we have not needed an extra
type specification language for traces.

In this work we give a semantics for untyped terms (λx. e) but
a clear topic for future work is to give a traceset semantics for
typed terms (λx : A. e) and dependent types (Πx : A.B), and to
extend this proof technique to additional language constructs (e.g.
constants, primitive operations, and data constructors) and to richer
type systems (e.g. with polymorphism, bounded quantification,
dependent types, etc.). Several interesting questions immediately
arise, for example, what is the trace semantic meaning J∀X.AKk of
a polymorphic type?

Another important direction is the relationship between higher-
order dynamic contracts [19, 7] (which filter behaviors) and static
types (which specify behavior), and perhaps expressing both in
the common framework of tracesets could help elucidate this
relationship.

Trace-based soundness proofs may also be helpful for other
modular analyses, such as the classic framework of Hoare triples
{Pre} Stmt {Post}. As we have seen, tracesets can capture both state
(as with reference cells) and behaviors, and so we might perhaps
map all components to the above Hoare triple into tracesets with
an appropriate relation between those tracesets (analogous to the
relation JeKk @ JAKk for type systems). Separation logic extends
Hoare logic with a more natural frame rule, and so tracesets might
also provide a useful model for a higher-order version of separation
logic.

Acknowledgments We thank Philippa Gardner, Scott Smith,
DeLesley Hutchins, Philip Wadler, Jeremy Siek, and Martin Abadi
for helpful conversations on this work

References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing

in a statically-typed language. In Symposium on Principles of
Programming Languages, pages 213–227, 1989.

[2] Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, and C.-
H. Luke Ong. Applying game semantics to compositional software

modeling and verification. In TACAS, pages 421–435, 2004.

[3] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract
game semantics for general references. In LICS, pages 334–344, 1998.

[4] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full
abstraction for PCF. Information and Computation, 163:409–470,
1996.

[5] Samson Abramsky and Guy McCusker. Call-by-value games. In CSL,
pages 1–17, 1997.

[6] R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating
refinement relations. CONCUR’98 Concurrency Theory, pages
163–178, 1998.

[7] R.J. Back and J. Von Wright. Contracts, games, and refinement.
Information and Computation, 156(1):25–45, 2000.

[8] Stephen Brookes. Traces, pomsets, fairness and full abstraction for
communicating processes. Proc. CONCUR 2002, Brno. Springer
LNCS, 2421:466–482, 2002.

[9] Stephen Brookes. A semantics for concurrent separation logic. In
CONCUR 2004-Concurrency Theory, pages 16–34. Springer, 2004.

[10] R. Cartwright and M. Felleisen. Observable sequentiality and full
abstraction. In Proceedings of the 19th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 328–342.
ACM, 1992.

[11] Robert Cartwright, Pierre-Louis Curien, and Matthias Felleisen. Fully
abstract semantics for observably sequential languages. Inf. Comput.,
111(2):297–401, 1994.

[12] L. Damas and R. Milner. Principal type-schemes for functional
programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 207–212.
ACM, 1982.

[13] L. M. M. Damas. Type Assignment in Programming Languages. PhD
thesis, University of Edinburgh, 1985.

[14] Y. Deng and D. Sangiorgi. Towards an algebraic theory of typed
mobile processes. Automata, Languages and Programming, pages
445–456, 2004.

[15] B. Duba, R. Harper, and D. MacQueen. Typing first-class continuations
in ml. In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 163–173. ACM, 1991.

[16] M. Felleisen and R. Hieb. The revised report on the syntactic
theories of sequential control and state. Theoretical computer science,
103(2):235–271, 1992.

[17] Matthias Felleisen and Daniel P. Friedman. Control operators, the
SECD-machine, and the lambda-calculus. In 3rd Working Conference
on the Formal Description of Programming Concepts, pages 193–219,
1986.

[18] Matthias Felleisen and Daniel P. Friedman. A syntactic theory of
sequential state. Computer Science Dept. Technical Report 230,
Indiana University, Bloomington, Indiana, 1987.

[19] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-
order functions. In Proceedings of the International Conference on
Functional Programming, pages 48–59, 2002.

[20] CAR Hoare. A model for communicating sequential process. 1981.

[21] D. Hopkins and C. Ong. Homer: A higher-order observational
equivalence model checker. In Computer Aided Verification, pages
654–660. Springer, 2009.

[22] D.L. Hutchins. Pure subtype systems: A type theory for extensible
software. 2009.

[23] D.L.S. Hutchins. Pure subtype systems. In Symposium on Principles
of Programming Languages, volume 45, pages 287–298. ACM, 2010.

[24] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I,
II, and III. Inf. Comput., 163(2):285–408, 2000.

[25] N. Kobayashi, B.C. Pierce, and D.N. Turner. Linearity and the π-
calculus. ACM Transactions on Programming Languages and Systems

(TOPLAS), 21(5):914–947, 1999.

[26] J. Laird. A fully abstract game semantics of local exceptions. In Logic
in Computer Science, Washington, DC, USA, 2001.

[27] J. Laird. A game semantics of the asynchronous π-calculus. CONCUR
2005–Concurrency Theory, pages 51–65, 2005.

[28] J. Longley and N. Wolverson. Eriskay: a programming language based
on game semantics. In Games for Logic and Programming Languages
III Workshop. Citeseer, 2008.

[29] R. Milner. The polyadic π-calculus: A tutorial. Logic and Algebra of
Specification, 94, 1991.

[30] R. Milner. Communicating and Mobile Systems: The π-Calculus.
Cambridge University Press, 1999.

[31] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I.
Information and computation, 100(1):1–40, 1992.

[32] Milner, R. A theory of type polymorphism in programming. J. Comput.
Syst. Sci., 17:348–375, 1978.

[33] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.
In Logic in Computer Science, 1993. LICS’93., Proceedings of Eighth
Annual IEEE Symposium on, pages 376–385. IEEE, 1993.

[34] B.C. Pierce. Foundational calculi for programming languages.
Handbook of Computer Science and Engineering, pages 2190–2207,
1995.

[35] John C. Reynolds. The essence of ALGOL, pages 67–88. Birkhauser
Boston Inc., Cambridge, MA, USA, 1997.

[36] N. Wolverson. Game semantics for an object-oriented language. 2009.

[37] A. Wright and M. Felleisen. A syntactic approach to type soundness.
Info. Comput., 115(1):38–94, 1994.

9. Appendix
Lemma 6 (Copycats Preserve Specifications).

If P is well-formed and FR(P) = ∅ and FS(P) ⊆ y then:

x!!y @ x!θy .(P × ¬θP)

Proof.

x!!y @ x!θy .(P × ¬θP)
⇔ x!θy . ∗ (

⋃n
i θyi?z .yi!!z) @ x!θy .(P × ¬θP)

(by definition)
⇐ ∗

⋃n
i θyi?z .yi!!z @ P × ¬θP

(by prop 37)

This holds by lemma 7.

Lemma 7. If P is well-formed and FR(P) = ∅ and FS(P) ⊆ y
then:

∗
n⋃
i=1

θyi?zi .yi!!zi ×
m∏
k

yjk !!zjk @ P × P ′

where P ′ = (¬θP) \ θyj1?zj1 \ · · · \ θyjm?zjm

Proof. To show this holds, we note that any free receive events in
P × P ′ is also in ∗(

⋃n
i θyi?zi .yi!!zi) and if we remove an event

θyjm+1?zjm+1 from both sides we will have:

∗(
⋃n
i θyi?zi .yi!!zi)× (

∏m+1
k yjk !!zjk)

@n−1 P × P ′ \ θyjm+1?zjm+1

And this holds by induction on a smaller n.
To see that send events on the left-hand side are matched on the

right-hand side, note that because receive events on θyji through
θyjm are removed from ¬θP the corresponding send events on yj1
through yjm must be in P . Removing a send event yl!zl from both
sides gives us:

(∗(
⋃n
i θyi?zi .yi!!zi)× (

∏m
k yjk !!zjk)) \ yl!zl

@n−1 (P × P ′) \ yl!zl
Since P is well-formed it does not matter in what order send events
are removed so without loss of generality we pick yl = yjm and
get:

∗(
⋃n
i θyi?zi .yi!!zi)× yl!zl1...o . ∗ (

⋃o
i θzli?wi .zli !!wi)

×(
∏m−1
k yjk !!zjk)

@n−1 P \ yl!zl × P ′

⇐ ∗(
⋃n
i θyi?zi .yi!!zi)× ∗(

⋃o
i θzli?wi .zli !!wi)

×(
∏m−1
k yjk !!zjk)

@n−1 P \ yl!zl × P ′

Note that FR(P \yl!zl×P ′) ⊆ {θy1, . . . , θyn}∪{θzl1 , . . . , θzlo}.
Renaming θzlo , . . . , θzlo to θyn+1, . . . , θyn+o gives us:

∗(
⋃n
i θyi?zi .yi!!zi)× ∗(

⋃o
i θyi?wi .yi!!wi)

×(
∏m−1
k yjk !!zjk)

@n−1 P \ yl!zl × P ′

⇔ ∗(
⋃n+o
i θyi?zi .yi!!zi)× (

∏m−1
k yjk !!zjk)

@n−1 P \ yl!zl × P ′

And this holds by induction on a smaller n.

As a technical device to simplify the proof of compositional
reasoning, we extend the syntax of events with the opaque event τ
and define a τ generating parallel composition operator ‖ as:

P ‖Q =
⋃
π 6=τ

π .(((P \ π) ‖Q) ∪ (P ‖ (Q \ π)))

∪
⋃
π 6=τ

τ .νx.(P \ π ‖Q \ ¬π) where x = BV(π)

Note that this definition is similar to the standard definition of
parallel composition but with a τ at points of communication. This
allows us to “hide” traces behind a sequence of τs.

We also extend the definition of subbehaviors to handle opaque
events. The indexed τ subbehavior relation P @τn Q holds when Q
is τ -free at P @τ0 Q as a base case and P @τn+1 Q if and only if
the following conditions hold:

1. P − τ @τn Q where P − τ = {α | τ .α ∈ P} ∪ {π .α ∈ P |
π 6= τ}

2. If τ 6∈ P then for all send events π: π ∈ P ⇒ (π ∈
Q) ∧ (P \ π @τn Q \ π).

3. If τ 6∈ P then for all receive events π: π ∈ Q ⇒ (π ∈
P) ∧ (P \ π @τn Q \ π).

If P @τn Q holds for all n then we write P @τ Q.

Lemma 8 (Opaque Composition).

P ‖Q @τ R⇒ P ⊗ Q @ R

Proof. We show by induction on n that:

P ⊗ Q @n R

assuming P ‖Q @τn R.
For n = 0 this holds directly. For n > 0 we have two cases to

consider:

• Case when send π ∈ P ⊗ Q we must show π ∈ R and
(P ⊗ Q) \ π @n−1 R \ π.
From our assumptions either π ∈ (P ‖Q) and thus π ∈ R or
the event is hidden behind some number of τs. Since we have

(P ‖Q)− τ @τn−1 R, after some number of τ removals we will
have P ‖Q @τm R where P ‖Q is τ -free and π ∈ (P ‖Q) so
π ∈ R.
To show (P ⊗ Q) \ π @n R \ π we note:

(P ⊗ Q) \ π = (
⋃
π′ 6=τ

π′ .(P \ π′ ⊗ Q)

∪
⋃
π′ 6=τ

π′ .(P ⊗ Q \ π′)

∪
⋃
π′ 6=τ

νx.(P \ π′ ‖Q \ ¬π′)) \ π

= (P \ π ⊗ Q) ∪ (P ⊗ Q \ π)

(P ‖Q) \ π = (
⋃
π′ 6=τ

π′ .(P \ π′ ‖Q)

∪
⋃
π′ 6=τ

π′ .(P ‖Q \ π′)

∪
⋃
π′ 6=τ

τ .νx.(P \ π′ ‖Q \ ¬π′)) \ π

= (P \ π ‖Q) ∪ (P ‖Q \ π)

From our assumption P ‖Q @τn R we have (P \ π ‖Q) ∪
(P ‖Q \ π) @τn−1 R \ π. So by our induction hypothesis and
(P \π ‖Q) @τn−1 R\π we have P \π ⊗ Q @n−1 R\π. And
from P ‖Q \ π @τn−1 R \ π we have P ⊗ Q \ π @n−1 R \ π.
Therefore we have (P \ π ⊗ Q) ∪ (P ⊗ Q \ π) @n−1 R \ π
as required.

• Case when receive π ∈ R we must show π ∈ P ⊗ Q and
(P ⊗ Q) \ π @n−1 R \ π.
From the assumption P ‖Q @τn R we know that a receive π ∈
R implies π ∈ P ‖Q. Since π ∈ P ‖Q implies π ∈ P ⊗ Q
we are done.
The argument for (P ⊗ Q) \ π @n R \ π is identical to the
previous case.

Lemma 9 (Compositional Reasoning). If all the following are true:

P @ P ′ ×R
Q @ Q′ × ¬R

FV(Q′) ∩ x = ∅
FV(P ′) ∩ x = ∅

FV(R) ⊆ x
FS(P) ∩ FR(Q) ⊆ x
FR(P) ∩ FS(Q) ⊆ x

then

νx.(P ⊗ Q) @ P ′ ×Q′

Proof. We show by induction on n that:

νx.(P ‖Q) @τn P
′ ×Q′

assuming P @n P ′ × R and Q @n Q′ × ¬R. By Lemma 8 this
will give us νx.(P ⊗ Q) @ P ′ ×Q′. Note that P,Q are τ -free but
P ‖Q and νx.(P ‖Q) might generate τs.

For n = 0 this holds directly. For n > 0 and must show have
three cases to consider:

• Case when τ 6∈ (νx.(P ‖Q)) and send π ∈ νx.(P ‖Q).
If π ∈ P we know π ∈ P ′ × R and since π 6∈ R we have
π ∈ P ′ so π ∈ P ′ × Q′. Similar argument when we have
π ∈ Q.
To show (νx.(P ‖Q)) \ π @τn−1 (P ′ ×Q′) \ π note that:

(νx.(P ‖Q)) \ π = νx.((P ‖Q) \ π)

= νx.((P \ π ‖Q) ∪ (P ‖Q \ π))

From assumptions we have:

P \ π @n−1 (P ′ ×R) \ π
= P ′ \ π ×R (since π 6∈ R)

Q \ π @n−1 (Q′ × ¬R) \ π
= Q′ \ π × ¬R (since π 6∈ ¬R)

In addition, from P @n P ′ ×R we have P @n−1 P
′ ×R and

from Q @n Q′ × ¬R we have Q @n−1 Q
′ × ¬R. So from:

Q @n−1 Q
′ × ¬R

P \ π @n−1 P
′ \ π ×R

and the induction hypothesis we have νx.(P \ π ‖Q) @τn−1

P ′ \ π ×Q′. And from:

P @n−1 P
′ ×R

Q \ π @n−1 Q
′ \ π × ¬R

and the induction hypothesis we have νx.(P ‖Q \ π) @τn−1

P ′ ×Q′ \ π. So from:

νx.(P \ π ‖Q) @τn−1 P
′ \ π ×Q′

νx.(P ‖Q \ π) @τn−1 P
′ ×Q′ \ π

we have as required:

νx.((P \ π ‖Q) ∪ (P ‖Q \ π)) @τn−1 (P ′ ×Q′) \ π
• Case when τ 6∈ (νx.(P ‖Q)) and receive π ∈ P ′ ×Q′.

If π ∈ P ′ from the assumption P @n P ′ × R with n > 0 it
must be that π ∈ P so π ∈ νx.(P ‖Q). Similar argument when
we have π ∈ Q′.
Showing (νx.(P ‖Q)) \ π @τn−1 (P ′ ×Q′) \ π is the same as
the previous case.

• Case when τ ∈ (νx.(P ‖Q)). We need to show that
(νx.(P ‖Q))− τ @τn−1 P

′ ×Q′ holds.
We have νx.(P ‖Q)) − τ = νx.((P ‖Q) − τ) and from the
definitions:

(P ‖Q)− τ =
⋃
π 6=τ

π .(P \ π ‖Q) (L1)

∪
⋃
π 6=τ

π .(P ‖Q \ π) (L2)

∪
⋃
π 6=τ

νy.(P \ π ‖Q \ ¬π)

(L3, with y = BV(π))

Expanding the definition of P ′ ×Q′:

P ′ ×Q′ =
⋃
π 6=τ

π .(P ′ \ π ×Q′) (R1)

∪
⋃
π 6=τ

π .(P ′ ×Q′ \ π) (R2)

So we need to show νx.L1 ∪ νx.L2 ∪ νx.L3 @τn−1 R1 ∪R2.
To show νx.L1 @τn−1 R1 we note from the assumptions that
P @n P ′ × R so P \ π @n−1 (P ′ × R) \ π for all send
π ∈ νx.L1 or equivalently P \ π @n−1 P ′ \ π × R since

FV(π) 6∈ x and FV(R) ⊆ x. Therefore, by induction we have
νx.

⋃
π 6=τ π.(P \ π ‖Q) @τn−1

⋃
π 6=τ π.(P

′ \ π ×Q′).
The argument for νx.L2 @τn−1 R2 is similar.
For

⋃
π 6=τ νy.(P \ π ‖Q \ ¬π) note that since FV(π) ⊆ x we

have from the assumptions:

P \ π @n−1 P
′ ×R \ π

Q \ π @n−1 Q
′ × ¬R \ π

Therefore it follows by induction that νx.νy.(P \ π ‖Q \
¬π) @τn−1 P

′ ×Q′.
Thus νx.(P ‖Q)− τ @τn−1 P

′ ×Q′.

	Introduction
	The Trace Calculus
	Operations on Tracesets
	The Alternating Trace Containment Relation
	The Algebra of Traces
	Copycat Sends

	Type Soundness for the Simply Typed Lambda Calculus
	STLC Syntax and Semantics
	STLC Typing and Type Soundness

	Type Soundness for Subtyping
	Type Soundness for call/cc
	Type Soundness for Reference Cells
	Type Soundness for Fork
	Related and Future Work
	Appendix

