
Virtual Values for Language Extension

Thomas H. Austin Tim Disney Cormac Flanagan
University of California, Santa Cruz

Abstract
This paper focuses on extensibility, the ability of a program-
mer using a particular language to extend the expressiveness
of that language. This paper explores how to provide an in-
teresting notion of extensibility by virtualizing the interface
between code and data. A virtual value is a special value
that supports behavioral intercession. When a primitive op-
eration is applied to a virtual value, it invokes a trap on that
virtual value. A virtual value contains multiple traps, each
of which is a user-defined function that describes how that
operation should behave on that value.

This paper formalizes the semantics of virtual values, and
shows how they enable the definition of a variety of lan-
guage extensions, including additional numeric types; de-
layed evaluation; taint tracking; contracts; revokable mem-
branes; and units of measure. We report on our experience
implementing virtual values for Javascript within an exten-
sion for the Firefox browser.

Categories and Subject Descriptors D.3.1 [Formal Defini-
tions and Theory]: Semantics

General Terms Languages, Reliability, Security.

Keywords Proxies, Metaobject Protocols, Behavioral In-
tercession.

1. Introduction
Programming language design is driven by multiple, of-
ten conflicting desiderata, such as: expressiveness, simplic-
ity, elegance, performance, correctness, and extensibility, to
name just a few. This paper focuses primarily on extensibil-
ity: the ability of a programmer using a particular language
to extend the functionality and expressiveness of that lan-
guage. Extensibility is desirable on its own merits; it also
helps control language complexity by allowing many as-
pects of functionality to be delegated to libraries, and it en-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

ables grassroots innovation, where individual programmers
can extend the language rather than being restricted to par-
ticular features chosen by the language designer.

Our starting point for language extension is the obser-
vation that language semantics typically involve interaction
between code and data, where code performs various opera-
tions (allocation, assignment, addition, etc.) on data values.
The behavior of each operation is typically hardwired by the
language semantics. If a function wants to perform addition
on its argument, then it must be passed a numeric value that
can be understood by the built-in addition operation. Conse-
quently, a user-defined complex type will not interoperate
with code that uses the built-in addition operation.

Computer science has a strong history of virtualizing var-
ious well-defined interfaces. For example, virtualizing the
interface between a processor and its memory subsystem en-
abled innovations such as virtual memory, distributed shared
memory, and memory mapped files. Virtualizing the entire
processor enables multiple virtual machines to run on a sin-
gle hardware processor, or to migrate between processors.

This paper explores the benefits of “virtualizing” the
interface between code and data values. Specifically, we
present a language that supports virtual values. When a
primitive operation expects a regular value but finds a virtual
value in its place, that operation invokes a trap on the vir-
tual value. Each virtual value is simply a collection of traps,
each of which is a user-defined function that describes how
a particular operation should behave on that virtual value.

Although virtualization is often considered esoteric, with
complex interactions between various meta-levels, we show
that the semantics of data virtualization can be elegantly cap-
tured using the standard tools of operational semantics. This
operational semantics is mostly straightforward, with addi-
tional evaluation rules for invoking traps for operations on
virtual values. We formalize this semantics of virtual values
in the context of a particular dynamically typed language;
however, our ideas should be generally extensible to other
languages.

We believe that virtual values provide a rather useful no-
tion of language extensibility. Of course, validating a lan-
guage design feature is always difficult. In this paper, we
aim to validate the expressiveness and extensibility benefits

of virtual values by illustrating the kinds of language exten-
sions that they enable. These extensions include:

1. Additional numeric types, such as rationals, bignums,
complex numbers, or decimal floating points1, with tra-
ditional operator syntax.

2. Units of measure (meters, seconds, etc).

3. Lazy or delayed evaluation, with implicit forcing when a
delayed value is passed to a strict operation.

4. Taint tracking.

5. Dynamically checked contracts [6], including contracts
on functions and data structures that are enforced lazily.

6. Revocable membranes, which allow two components to
interact until the membrane is revoked, after which fur-
ther interaction is forbidden [17].

Each language extension is powerful yet small (the complete
code is included in the paper), thus illustrating that virtual
values offer an elegant and expressive mechanism for lan-
guage extension.

These extensions are nicely composable. For example, we
extend the language with contracts, and use that contract ex-
tension to document other extensions. Our taint extension
automatically tracks taint information through all code, in-
cluding through the complex numbers extension or the de-
layed evaluation extension.

To emphasize the modularity benefits of virtual values,
we briefly consider the consequences of an alternative archi-
tecture in which these extensions are implemented as part
of the language itself. This approach radically complicates
the language, since each extension may cross-cut the other
features and evaluation rules of the language. For example,
the taint tracking and complex number extension would in-
teract in a non-trivial fashion, since we would need to track
how taint information flows through operations on complex
numbers.

In contrast, virtual values enable a clear separation of
concerns between the various extension modules, and pro-
vide a coherent and extensible architecture. Composed vir-
tual values are essentially an instance of the Decorator Pat-
tern [10], which is a fairly general pattern that can be ap-
plied to any interface, but in our experience it is particularly
powerful when applied to the widely-used interface between
code and data.

1.1 Related Work
This work is inspired by Miller and Van Cutsem’s proposal
for Javascript Catch-All Proxies [4, 18], which provide traps
for operations on functions and objects. These object prox-

1 Decimal floating point numbers (IEEE 754-2008) avoids the unintuitive
rounding errors of binary floating point. Our work is partly motivated by
discussions within the ECMA TC39 Javascript standardization committee
regarding the desire for a decimal floating point library that could support
convenient operator syntax.

ies virtualize the interface between code and objects (in-
cluding function objects). Analogous functionality has been
provided in other languages, including via Racket’s chaper-
ones [8].

Virtual values generalizes these prior ideas to virtualize
the interface between code and all data values, including
primitive values such as integers. This generalization enables
additional applications, including applications (1)–(5) from
the list above, and may prove helpful for mainstream lan-
guages, which typically include a large collection of non-
object values.

SmallTalk [11] demonstrated the benefits of pure object-
oriented programming, in which all data values are ob-
jects, and all operations (including addition and conditional
tests) are method calls. Smalltalk supports the definition of
proxy objects that implement the doesNotUnderstand:

method and that delegate to an underlying object, a tech-
nique called behavioral intercession. This pure object ar-
chitecture provides flexibility and partially virtualizes the
interface between code and data, since many operations are
performed via dynamically-dispatched method calls. How-
ever, Smalltalk and related pure object languages such as
AmbientTalk [20], E [19], and Python typically do not pro-
vide the full set of required traps, and in particular often omit
the geti and seti traps (discussed below) that are essential
for full virtualization.

This paper extends the virtualization provided by pure ob-
ject languages, and moreover demonstrates that extensibil-
ity is not restricted to pure object languages: virtual values
enable similar extensibility in languages that are not object
oriented, or that are only partially object oriented and which
include non-object values.

Language extensibility has been the target of a rich body
of prior research. For example, CLOS provides a very flex-
ible metaobject protocol [15], which gives the ability to in-
spect and modify the behavior of the object runtime system,
often in a very general manner. In comparison to CLOS, vir-
tual values provides a focused mechanism for changing the
language semantics at a per-value granularity, which is well-
suited for the kinds of language extensions that we address.

Aspect-oriented programming (AOP) [14] focuses on
cross-cutting concerns that span multiple components of
a system. As one example, aspects have been used to en-
force fine-grained security policies in browsers [16]. Virtual
values share similar motivations to AOP, and both enable the
developer to insert code at different point-cuts, but using vir-
tual values these point-cuts are chosen dynamically (based
on where virtual values are used) rather than statically (as in
weaving-based approaches to AOP).

In a language with a rich static type system, the “trap
dispatch” operations on virtual values could be resolved
statically, e.g. via Haskell’s [22] type classes. This static
type based approach provides stronger correctness guaran-
tees and improved performance over virtual values, but at a

cost of more conceptual complexity and some decrease in
flexibility. Overall, virtual values seem best suited to provid-
ing extensibility in languages whose static type systems are
less rich than Haskell, or in dynamically typed languages.
Also, whereas type classes such as Haskell’s Num class vir-
tualize some language operations (those that manipulate Num
values), virtual values generalize this idea to all language op-
erations.

Contributions: The main contributions of this paper are:

• it virtualizes the entire interface between code and data
values, thus providing a general mechanism for value-
specific behavioral intercession;
• it clarifies that languages that are not object oriented or

only partially object oriented can still enjoy the extensi-
bility benefits of pure object languages;
• it presents an operational semantics for virtual values;
• it illustrate the extensibility benefits of virtual values

by implementing six non-trivial language extensions:
(1) complex numbers; (2) units of measure; (3) delayed
evaluation; (4) taint analysis; (5) contracts; and (6) re-
vokable membranes;
• and it reports on our experience implementing this design

in the Firefox browser.

2. A Language With Virtual Values
We formalize the semantics of virtual values in the context
of an idealized language that extends the dynamically typed
λ-calculus with virtual values, as well as with mutable, ex-
tensible records, as in Javascript. For brevity, we use proxy
as a synonym for virtual value, and so refer to the language
as λproxy.

2.1 Syntax
The syntax of λproxy is summarized in figure 1. In addition
to the usual abstractions (λx. e), applications (e e), and vari-
ables (x) of the λ-calculus, the language also has constants
(c), conditionals (if e e e), and unary and binary operators
(uop e and e bop e, respectively). Constants include numbers
(n) and strings (s), as well as unit and boolean constants.

A record is mutable finite map from strings to values,
as in Javascript. The language includes constructs to create
({ s : e }), lookup (e[e]), and update (e[e] := e) this map.
Following Javascript, we include the syntactic sugar e.x to
abbreviate e["x"], etc. A record access returns false by
default (similar to undefined in Javascript) if an accessed
field is not defined in a record.

A proxy value p is created by the expression proxy e1 e2.
Here, e1 should be a secret (discussed below) and e2 should
be a handler record that defines nine trap functions with the

Figure 1: The Language λproxy

Syntax

e ::= Expressions
x variable
c constants
λx. e abstraction
e e application
if e e e conditional
uop e unary operators
e bop e binary operators
{ s : e } record creation
e[e] record lookup
e[e] := e record update
proxy e e proxy creation
isProxy e proxy predicate
unProxy e e proxy inspection

c ::= n | s | false | true | unit Constants

uop ::= - | ! | isNum | isBool Unary operators
isFunction | isRecord | tostring | . . .

bop ::= + | * | / | = | != | . . . Binary operators

Syntactic Sugar

e.x
def
= e["x"]

e.x := e′
def
= e["x"] := e′

x : e
def
= "x" : e

let x = e1; e2
def
= (λx. e2) e1

e1; e2
def
= (λx. e2) e1 x 6∈ FV (e2)

letrec x = e1; e2
def
= let y = {}; y.x := θe1; θe2

where θ = [x := y.x]

e1 || e2
def
= let x = e1; if x x e2

e1 && e2
def
= let x = e1; if x e2 x

λ. e
def
= λd. e d 6∈ FV (e)

f()
def
= f unit

assert e
def
= if e unit (unit unit)

private x = e; y = e′
def
= let p = {};

let q = {};
p.x := θe;

q.y := θe′;
q
where θ = [x := p.x, y := q.y]

following informal types:

call :: argument → result
getr :: index → contents
setr :: index → newcontents → Unit
geti :: record → contents
seti :: record → newcontents → Unit
unary :: uop→ result
left :: bop→ rightarg → result
right :: bop→ leftarg → result
test :: Unit → Any

The call trap defines how the proxy p should behave
when it is used as a function and applied to a particular
argument, as in (p arg). The getr and setr traps define
the proxy’s behavior when used as a record, as in p[w] and
p[w] := v, respectively. The geti and seti traps are called
when the proxy p is used as a record index, as in a[p] and
a[p] := v. The unary trap is invoked when a unary operator
is applied to the proxy (e.g., !p). The specific unary operator
is passed as a string argument (e.g., "!"), which facilitates
handling all unary operations in a consistent manner.

For binary operators, the proxy could occur on the left or
the right side of the operator, and each case invokes a cor-
responding trap (left or right), with the binary operator
string and the other operand being passed as arguments. If
both operands are proxies we give precedence to the left ar-
gument, and so the right trap is invoked only when the left
operand is not a proxy. Finally, if a proxy is used in a con-
ditional test, then the proxy’s test trap is invoked, which
should return a value to be used in that test.

The isProxy construct provides a reliable mechanism to
distinguish proxy and non-proxy values, since isProxy is a
separate construct in the language and not a unary operator
whose behavior can be overridden by a proxy’s unary trap.

Each proxy value (proxy a h) includes a secret a in
addition to its handler record h. The purpose of this secret
is to allow a module that allocates proxies to recognize its
own proxies and to distinguish them from proxies created by
other (potentially adversarial) modules. In particular, code
that knows the secret a can use the unProxy primitive to
extract the underlying handler record h from the proxy, via
unProxy a (proxy a h), which evaluates to h. Conversely,
code that does not know the secret a cannot gain access to
the underlying handler record h.

Figure 1 includes the usual abbreviations for let and
letrec, for the short-circuiting operators || and &&, and
for defining and invoking thunks. A failing assert is mod-
eled by getting stuck. To facilitate defining each language
extension, we introduce a lightweight syntax for modules

private x = e; y = e′

with private variables x, public variables y, and where all
definitions can be mutually recursive. (Here, overline de-
notes a repeated sequence.) In the desugared form of this

construct, the records p and q hold the private and public
bindings respectively, and only the public bindings in q are
exposed to the rest of the program. The substitution θ re-
places references to the module-defined variables x and y
with accesses to corresponding fields of p and q respectively.

2.2 Formal Semantics
Figure 2 formalizes the informal semantics outlined above.
A heap H is a finite map from addresses (a) to records,
where each record maps strings to values. A raw value r is
a constant, an address, or a λ-expression. A value v is either
a raw value or else proxy a h, where a is the secret address
and h is the handler record (or possibly a proxy that behaves
like a handler record). An evaluation state H, e contains a
heap and the expression being evaluated.

The rules for the evaluation relation H, e → H ′, e′ de-
fine how to evaluate the various constructs in the language.
The first collection of evaluation rules are mostly straight-
forward. The conditional test considers any raw value other
than false as being true. As usual, the partial function δ de-
fines the semantics of unary and binary operators (uop and
bop, respectively) on raw values. For example, the equal-
ity operator is defined as follows, and always considers λ-
expressions to be distinct (due to the difficulties of testing
functional equivalence).

δ("=", r1, r2)
def
=

{
true if r1 = r2, neither are λ-exprs
false otherwise

The unProxy primitive returns the handler record h only
when the secret a in the proxy matches the address a passed
to unProxy; and returns false otherwise.

The third collection of rules define how traps are in-
voked for proxy values. For example, according to the
[CALLPROXY] rule, in a function application (f v), if the
function f is actually a proxy (proxy a h), then the trap
h.call (or equivalently, h["call"]) is invoked on the ar-
gument v. Note that h can either be a handler record, or a
proxy representing a handler record; the [CALLPROXY] rule
handles both cases uniformly.

On a record access v[w] where v = (proxy a h),
the trap h.getr is applied to the record index w, via the
[GETRPROXY] rule. Updating a field of a proxy invokes its
setr trap, and assignments always return the assigned value.
Using a proxy as a record index invokes its geti and seti

traps via [GETIPROXY] and [SETIPROXY].
For a unary operation on a proxy, the unary trap is in-

voked, with the specific unary operator being passed as a
string argument. For a binary operation, the semantics first
attempts to dispatch to the left proxy argument, if that is a
proxy, by calling its left trap via the rule [LEFTPROXY]. If
the left argument is a raw value but the right argument is a
proxy, then that proxy’s right trap is invoked, passing the
binary operation string and the left (raw) argument.

Figure 2: λproxy Semantics

Runtime Syntax:

r ::= c | a | λx. e Raw values
v, w, h ::= r | proxy a h Values

e ::= . . . | a Expressions with addresses
H ::= Address →p (String →p Value) Heaps
E ::= • e | v • | if • e e | uop • | • bop e | v bop • Evaluation context frames

| proxy • e | proxy v • | isProxy • | unProxy • e | unProxy v •
| •[e] | v[•] | • [e] := e | v[•] := e | v[w] := • | { s : v, s : •, s : e }

Evaluation Rules:

H, (λx. e) v → H, e[x := v] [CALL]
H, { s : v } → H[a := { s : v }], a a 6∈ dom(H) [ALLOC]

H, a[s] → H, v s ∈ dom(H(a)), v = H(a)(s) [GET]
H, a[s] → H, false s 6∈ dom(H(a)) [GETFALSE]

H, a[s] := v → H ′, v H ′ = H[a := H(a)[s := v]] [SET]
H, uop r → H, δ(uop, r) [UNARYOP]

H, r1 bop r2 → H, δ(bop, r1, r2) [BINARYOP]
H, if r e1 e2 → H, e1 r 6= false [IFTRUE]

H, if false e1 e2 → H, e2 [IFFALSE]

H, isProxy (proxy a h) → H, true [ISPROXY]
H, isProxy r → H, false [NOTPROXY]

H, unProxy a (proxy a h) → H,h [UNPROXY]
H, unProxy a v → H, false v 6= (proxy a h) [UNPROXYFALSE]

H, (proxy a h) v → H,h.call v [CALLPROXY]
H, (proxy a h)[w] → H,h.getr w [GETRPROXY]
H, r[proxy a h] → H,h.geti r [GETIPROXY]

H, (proxy a h)[w] := v → H, (h.setr w v); v [SETRPROXY]
H, r[proxy a h] := v → H, (h.seti r v); v [SETIPROXY]
H, uop (proxy a h) → H,h.unary "uop" [UNARYPROXY]

H, (proxy a h) bop v → H,h.left "bop" v [LEFTPROXY]
H, r bop (proxy a h) → H,h.right "bop" r [RIGHTPROXY]

H, if (proxy a h) e1 e2 → H, if (h.test()) e1 e2 [TESTPROXY]

H,E[e] → H ′, E[e′] if H, e→ H ′, e′ [CONTEXT]

Figure 3: Identity Proxy

1 identityProxy : : Any→ Proxy = λx . proxy {} {
2 ca l l : λy . x y
3 getr : λn . x[n]
4 get i : λ r . r [x]
5 se t r : λn ,y . x[n] := y
6 se t i : λr , y . r [x] := y
7 unary : λo . unaryOps[o] x
8 l e f t : λo , r . binOps[o] x r
9 r ight : λo , l . binOps[o] l x

10 t e s t : λ . x
11 }
12

13 unaryOps : : UnaryOp⇒Any→Any = {
14 "-" : λx . −x
15 "!" : λx . !x / / negation
16 isBool : λx . isBool x
17 / / etc for a l l unary ops
18 }
19

20 binOps : : BinaryOp⇒Any→Any→Any = {
21 "+" : λx ,y . x+y
22 "=" : λx ,y . x=y
23 / / etc for a l l binary ops
24 }

3. Language Extension Examples
To illustrate the expressiveness and extensibility benefits of
proxies, we use the λproxy language to implement a series of
interesting language extensions. Each extension is small yet
adds significant expressive power to the language.

In each language extension, we often omit punctuation
such as commas or semicolons, and use indentation to clar-
ify nesting structure, as in Haskell. For brevity, we mostly
ignore error handling, and so some proxies simply get stuck
if used inappropriately. For documentation purposes, each
definition includes a contract, whose semantics we formal-
ize (via proxies) in section 3.3 below.

3.1 Identity Proxy
As a starting point for our series of language extensions, fig-
ure 3 sketches a simple proxy that has no effect on program
evaluation. In particular, evaluating (identityProxy x) re-
turns a proxy in which each trap handler simply performs
the appropriate operation on the underlying argument x. For
unary operations, the unary trap dispatches to an auxiliary
record unaryOps, which maps each unary operator string to
a function that performs the corresponding operation. The
left and right traps similarly dispatch to the binOps

lookup table. Identity proxies have no need to recognize each
other, and so we pass an arbitrary fresh record address as the
secret to proxy.

Figure 4: Lazy Evaluation Proxy

1 delay : : Thunk→ Proxy = λ f .
2 l e t rec z = (λ . l e t r=f () ; z := λ . r ; r)
3 proxy {} {
4 ca l l : λy . z () y
5 getr : λn . z () [n]
6 get i : λ r . r [z ()]
7 se t r : λn ,y . z () [n] := y
8 se t i : λr , y . r [z ()] := y
9 unary : λo . unaryOps[o] z ()

10 l e f t : λo , r . binOps[o] z () r
11 r ight : λo , l . binOps[o] l z ()
12 t e s t : λ . z ()
13 }

The identityProxy may appear to be somewhat circu-
lar, since it defines each unary operation in terms of that op-
eration itself. To illustrate how this circularity bottoms out,
consider:

-(identityProxy (identityProxy 4))

This expression creates a proxy p1, in which x is bound to
a second proxy p2, in which x is in turn bound to the in-
teger 4. The “−” operator above therefore invokes the trap
p1.unary("−"), which calls unaryOps["−"](p2), which
calls a second trap p2.unary("−"), which in turn calls
unaryOps["−"](4), which finally returns −4. Thus, the ap-
parent circularity bottoms out at the end of the proxy chain,
allowing proxies to compose conveniently.

In order for identityProxy to be transparent, we need
to hide the difference between a proxy and its underlying
value. In particular, identityProxy overrides the equality
operation, and so

"a" = (identityProxy "a")

evaluates to true. Similarly, the geti trap ensures that

{"a":3}[identityProxy "a"]

evaluates to 3.
The appendix includes a proof that the identity proxy for

a value v correctly simulates the behavior of v (provided no
code in the system uses the isProxy or unProxy reflection
primitives). Satisfying this property required several careful
design choices in our language semantics—for example, the
equality operator always considers λ-expressions to be dis-
tinct.

3.2 Lazy Evaluation Extension
We next extend the identity proxy to provide more inter-
esting functionality, namely lazy or delayed evaluation, as
shown in figure 4. The function delay takes as an argument
a thunk f and returns a proxy that behaves like the result
of f, except that that result is computed lazily, when some
strict operation invokes a trap on that proxy. Specifically, the

Figure 5: Contract Extension

1 / / Four contract constructors
2 Flat c = λpred .
3 λx . asser t (pred x) ; x
4

5 Functionc = λDomain,Range .
6 λx . asser t (isFunction x)
7 proxy {} {
8 ca l l : λy . Range (x (Domain y))
9 · · · / / as in identityProxy

10 }
11

12 Recordc = λcontracts .
13 λx . asser t (isRecord x)
14 proxy {} {
15 getr : λn . contracts [n] (x[n])
16 se t r : λn ,y . x[n] := (contracts [n] y)
17 · · · / / as in identityProxy
18 }
19

20 Mapc = λDomain,Range .
21 λx . asser t (isRecord x)
22 proxy {} {
23 getr : λn . Range (x[Domain n])
24 se t r : λn ,y . x[Domain n] := Range y
25 · · · / / as in identityProxy
26 }
27

28 / / Some useful contracts
29 Bool = Flat c (λx . isBool x)
30 Num = Flat c (λx . isNum x)
31 Any = Flat c (λx . true)
32 Unit = Flat c (λx . x = unit)
33 Thunk = Unit→Any
34 UnaryOp = Flat c (λx . {”−”:true , · · · }[x])
35 BinaryOp = Flat c (λx . {”+”: true , · · · }[x])
36 Proxy = Flat c (λx . isProxy x)

function delay creates a mutable variable2 z containing a
thunk that, when called, computes f() and stores the result-
ing value, wrapped in a thunk, back into z. Thus, z() returns
the result of f while avoiding repeated computation. Each
trap then calls z() to access the result of f.

In this manner, the resulting proxy causes delayed values
to be implicitly forced when needed; no explicit force op-
erations are required in the source program and no built-in
support for lazy evaluation is required in the language im-
plementation.

2 According to the desugaring of figure 1, the letrec-bound variable z is
actually a record field and so is mutable.

3.3 Contract Extension
A contract [6] is a function that mediates between two soft-
ware components: the function’s argument and the context
that observes the function’s result. As long as these two com-
ponents interact appropriately, the contract behaves like the
identity function; if either component engages in inappropri-
ate interaction (for example, passing a string argument when
an integer is expected), the intermediating contract detects
the error and halts execution.

Figure 5 shows how to implement contracts using prox-
ies, and provides four contract constructors. By convention,
we use capitalized identifiers to denote contracts, and use the
subscript c to denote contract constructors that return con-
tracts.

• A flat contract has the form (Flatc pred). When ap-
plied to an argument x, this contract requires that x sat-
isfy the predicate pred.
• A function contract (Functionc Domain Range) re-

quires that its argument should be a function that is ap-
plied only to values satisfying the contract Domain and
that returns only values satisfying Range.
• We support both homogeneous and heterogeneous record

contracts. A homogeneous record contract or map has
the form (Mapc Domain Range); a record r satisfies
this contract if each string index s in the domain of
r satisfies the Domain contract, and the corresponding
value r[s] satisfies Range. Domain should be a Flatc-
generated contract that preserves identity, in order for
record lookups to work correctly.
• A heterogeneous record contract has the form (Recordc
contracts), where contracts is a record mapping
record indices to contracts. A record r satisfies this con-
tract if for each string index s of r, the value r[s] satis-
fies contracts[s].

Both kinds of record contracts are enforced in a lazy man-
ner, on each access and update of the resulting proxy. We
use the syntax Domain → Range and Domain ⇒ Range

to abbreviate function and map contracts, respectively. We
adapt the module definition syntax from figure 1 to support
contracts on module bindings, and use this contract syntax
to document our language extensions.

Domain → Range
def
= Functionc Domain Range

Domain ⇒ Range
def
= Mapc Domain Range

private x :: C = e; y :: C ′ = e′
def
= let p = {};

let q = {};
p.x := θ(C e);

q.y := θ(C ′ e′);
q
(where θ = [x := p.x, y := q.y])

Figure 6: Tainting Extension

1 private secret = {}
2

3 t a in t : : Any→ Tainted = λx .
4 i f (isTainted x)
5 x
6 else
7 proxy secret {
8 value : x
9 ca l l : λy . t a in t (x y)

10 getr : λn . t a in t (x[n])
11 get i : λ r . t a in t (r [x])
12 se t r : λn ,y . x[n] := ta in t (y)
13 se t i : λr , y . r [x] := ta in t (y)
14 unary : λo . t a in t (unaryOps[o] x)
15 l e f t : λo , r . t a in t (binOps[o] x r)
16 r ight : λo , l . t a in t (binOps[o] l x)
17 t e s t : λ . x
18 }
19

20 isTainted : : Any→ Bool =
21 λx . i f (unProxy secret x) true false
22

23 untaint : : Any→ Untainted =
24 λx . l e t h = unProxy secret x
25 i f (h) h . value x
26

27 Tainted = Flat c (λx . (isTainted x)
28 Untainted = Flat c (λx . ! (isTainted x))

3.4 Tainting Extension
Several languages, such as Perl, provide tainting as a built-
in feature of the language implementation, which introduces
additional complexity into the compiler/interpreter and run-
time data representations.

Proxies allow this complexity to be isolated into a small
extension module, as shown in figure 6. The function taint

takes an argument x and returns a proxy that behaves much
like x, in that all traps first perform the corresponding op-
eration on x but then taint the result. Each tainting proxy
is marked with a secret that is kept private to the module,
so that we can reliably identify tainting proxies. A value is
tainted if it is one of these tainting proxies and is untainted
otherwise. To untaint values (after they have been appro-
priately sanitized), the handler record in the tainting proxy
keeps the original value in the value field, so that it can be
later returned by untaint.

Based on these definitions, tainted values now propagate
through all primitive operations of the language. For exam-
ple, 4 + (taint 5) evaluates to a tainted 9, that is, a taint-
ing proxy whose underlying raw value is 9.

Figure 8: Revokable Membranes

1 private secret = {}
2

3 private revoked : : Bool = false
4

5 swap : : Any→Any = λx .
6 asser t ! revoked
7 i f ((isNum x | | isBool x | | isStr ing x)
8 && !(isProxy x))
9 x

10 else
11 l e t h = unProxy secret x
12 i f (h)
13 h . value
14 else
15 proxy secret {
16 value : x
17 ca l l : λy . swap (x (swap y))
18 getr : λn . swap (x[swap n])
19 get i : λ r . swap ((swap r) [x])
20 se t r : λn ,y . x[swap n] := swap y
21 se t i : λr , y . (swap r) [x] := swap y
22 unary : λo . swap (unaryOps[o] x)
23 l e f t : λo , r . swap (binOps[o] x (swap r))
24 r ight : λo , l . swap (binOps[o] (swap l) x)
25 t e s t : λ . i f (x) true false
26 }
27

28 revoke = λ . (revoked := true)

3.5 Revokable Membranes
Figure 8 describes how to implement revokable membranes,
which provide unavoidable transitive interposition between
two software components [17], which we call the dry and
wet components. The two components can communicate via
the membrane in a transparent manner, but cannot share
true references (functions or records), only proxies to refer-
ences. Consequently, once the membrane is revoked, no fur-
ther communication is possible between the two components
(unless of course there is a side channel for communication,
for example via a global mutable variable).

The function swap passes a value x from one side of
the membrane to the other (from dry to wet, or vice-versa).
Constants are passed without being wrapped, as they cannot
contain references. Since proxies can masquerade as con-
stants, we also need to check that x is not a proxy. Note that
isProxy is a special form and not a unary operator, and so
it cannot be trapped; it always reveals the true nature of a
proxy, which is critical for reasoning about the security guar-
antees provided by code such as membranes.

In the case where x is not a constant, we next use
unProxy to check if it is a membrane proxy p, in which
case the value field of the handler record contains the orig-

Figure 7: Complex Number Extension

1 private secret = {}
2

3 private complexUnaryOps : : UnaryOp⇒Num→Num→Any = {
4 "-" : λr , i . makeComplex (−r) (−i)
5 tos t r ing : λr , i . (tos t r ing r) + "+" + (tos t r ing i) + "i"

6 · · ·
7 }
8

9 private complexBinOps : : BinaryOp⇒Num→Num→Num→Num→Any = {
10 "+" : λ r1 , i 1 , r2 , i 2 . makeComplex (r1+r2) (i 1+i 2)
11 "=" : λ r1 , i 1 , r2 , i 2 . (r1=r2) && (i 1=i 2)
12 · · ·
13 }
14

15 makeComplex : : Num→Num→ Complex = λr , i .
16 proxy secret {
17 real : r
18 img : i
19 unary : λo . complexUnaryOps[o] r i
20 l e f t : λo ,y . l e t h = unProxy secret y
21 i f (h)
22 complexBinOps[o] r i h . real h . img
23 else
24 complexBinOps[o] r i y 0
25 r ight : λo ,y . complexBinOps[o] y 0 r i
26 t e s t : λ . true / / a l l Complex are non−fa lse
27 }
28

29 isComplex : : Any→ Bool = λx . i f (unProxy secret x) true false
30

31 i : : Complex = makeComplex 0 1
32

33 Complex = Flat c isComplex

inal unwrapped value v, which is then returned. Essentially,
passing v across the membrane produced proxy p, and pass-
ing p back through the membrane returns the original v.

Otherwise, if x is not a membrane proxy, we create a new
proxy that performs the appropriate wrapping in its traps,
and whose value field records the original value x. For
example, if (swap dry-fn) passes a function dry-fn from
the dry to the wet component, yielding a proxy wet-fn, then
on any application (wet-fn wet-arg), the call trap of
wet-fn first passes wet-arg to the dry component (via swap)
before feeding it as the argument into dry-fn, and finally
passes the result of dry-fn back to the wet component (again,
via swap).

Note that we implement all traps, and not just the get,
set, and call traps, to support situations where, for exam-
ple, smight be a complex number proxy. That complex num-
ber proxy would get wrapped in an additional membrane
proxy, and so both extensions compose nicely.

3.6 Additional Numeric Types
An often-requested feature of a programming language is the
ability to introduce additional numeric types beyond what
are provided in the language implementation, and to manip-
ulate these additional types using traditional operator syntax.
In many languages, this kind of extension is difficult. For
example, Java provides Bignums, but only as a library with
awkward method invocation syntax, and it does not provide
rationals, complex numbers, or decimal floating points.

Figure 7 illustrates how to extend λproxy with an addi-
tional numeric type, namely complex numbers. The func-
tion makeComplex takes as input the two components of a
complex number, and creates a proxy that dispatches unary
and binary operations appropriately. For binary operations,
the left trap first checks if the right argument y is a or-
dinary number or a complex number. If y is complex, then
we pass its real and imaginary components (extracted from
y’s handler record h) to the appropriate function in the

Figure 9: Dynamic Units of Measure Extension

1 private secret = {}
2

3 private makeQuantity : : String → Int → Quantity → Quantity = λu , i , n .
4 l e t h = unProxy secret n
5 i f (i = 0) / / drop zero−ary unit
6 n
7 else i f (h && h. unit = u) / / same unit , avoid duplicates
8 makeQuantity u (h . index + i) h . value
9 else i f (h && h. unit > u) / / keep proxies ordered

10 makeQuantity h . unit h . index (makeQuantity u i h . value)
11 else / / add th is unit to proxy chain
12 proxy secret {
13 unit : u / / record the unit , index , and underlying value in the handler
14 index : i
15 value : n
16 / / no call , getr , geti , setr , s e t i traps
17 unary : λo . unitUnaryOps[o] u i n
18 l e f t : λo , r . unitLeftOps [o] u i n r
19 r ight : λo , l . unitRightOps [o] u i n l
20 t e s t : λ . n / / ignore units in t e s t
21 }
22

23 private unitUnaryOps : : UnaryOp⇒ String → Int → Quantity →Any = {
24 "-" : λu , i , n . makeQuantity u i (−n)
25 tos t r ing : λu , i , n . (tos t r ing n) + " " + u + "^" + i
26 · · ·
27 }
28 private unitLeftOps : : BinaryOp⇒ String → Int → Quantity →Any→Any = {
29 "+" : λu , i , n , r . makeQuantity u i (n + (dropUnit u i r))
30 "*" : λu , i , n , r . makeQuantity u i (n ∗ r)
31 "/" : λu , i , n , r . makeQuantity u i (n / r)
32 "=" : λu , i , n , r . n = (dropUnit u i r)
33 · · ·
34 }
35 private unitRightOps : : BinaryOp⇒ String → Int → Quantity →Any→Any = {
36 / / l e f t arg never a proxy
37 "+" : λu , i , n , l . asser t fa lse / / unit mismatch
38 "*" : λu , i , n , l . makeQuantity u i (l ∗ n)
39 "/" : λu , i , n , l . makeQuantity u (−i) (l / n)
40 "=" : λu , i , n , l . fa lse / / unit mismatch
41 · · ·
42 }
43

44 private dropUnit : : String → Int → Quantity → Quantity = λu , i , n .
45 l e t h = unProxy secret n
46 asser t h != false && h. unit = u && h. index = i
47 h . value
48

49 makeUnit : : String → Quantity = λu . makeQuantity u 1 1
50 Quantity = Flat c (λx . i f (isNum x | | unProxy secret x) true false)

complexBinOps table. Otherwise we assume that y is a
real number and pass 0 as the imaginary component to the
complexBinOps table function. The right trap is simpler,
since its left argument is never complex.

Our example implementation exports the variable i, from
which client code can conveniently construct arbitrary com-
plex numbers, for example

1.0 + (1.0 * i)

Note that proxies are not a “silver bullet” for compositional-
ity. In particular, proxies use a double dispatch protocol for
overloading binary operators. Consequently, two indepen-
dent proxy-based extensions, say Complex and Rational,
may not be composable, since neither implementation knows
how to add a complex and a rational number. Generic func-
tions, as in CLOS [15] and elsewhere, provide more flexibil-
ity but with some additional complexity.

3.7 Dynamic Units Of Measure
Several type systems (see for example, [13]) have been pro-
posed to track units of measure, such as meters or seconds,
and to avoid the confusion of units that caused the Mars Cli-
mate Orbiter mishap. We use the term quantity to mean a
floating point number annotated with zero or more units of
measure, each of which may have an associated integer mul-
tiplicity or index (as in second−2). Thus, an example quan-
tity is 9.81 meters second−2.

Proxies provide a convenient means to track units dynam-
ically, as illustrated in figure 93. Each quantity is represented
as a chain of proxies, terminating in a floating point num-
ber. As shown in lines 13–15, each proxy contains a unit
of measure, an integer index, and an underlying value (the
next proxy in the chain, or a floating point number). The
function makeQuantity creates these proxies, ensuring that
each proxy has a non-zero index, and that the proxy chain
is kept in lexicographic ordering of units with at most one
proxy for each unit (i.e., no duplicates).

Unary and binary operators on a Quantity propagate
down the proxy chain to the underlying numbers, provided
the units are appropriately compatible. In particular, "+"
requires that its arguments have identical units by calling
the function (dropUnit u i r), which ensures that the
right argument r has the unit u with index i, and returns
the unwrapped version of r. The units module then exports
a binding makeUnit, which can be used by client code to
create desired units of measure, as in:

1 l e t meter = makeUnit "meter"

2 l e t second = makeUnit "second"

3 l e t g = 9.81 ∗ meter / second / second
4 g + 1 / / dynamic unit mismatch error

3 For simplicity, this implementation does not support dimensions (such as
mass), but only units of measure (such as kilograms).

Figure 10: NonProxy Extension

1 private secret = {}
2

3 swap : : Any→Any = λx .
4 i f (isProxy x)
5 / / error i f not our proxy
6 (unProxy secret x) . value
7 else i f (isNum x | | isBool x | | isStr ing x)
8 x
9 else

10 proxy secret {
11 value : x
12 ca l l : λy . swap (x (swap y))
13 getr : λn . swap (x[swap n])
14 get i : λ r . swap ((swap r) [x])
15 se t r : λn ,y . x[swap n] := swap y
16 se t i : λr , y . (swap r) [x] := swap y
17 unary : λo . swap (unaryOps[o] x)
18 l e f t : λo , r . swap (binOps[o] x (swap r))
19 r ight : λo , l . swap (binOps[o] (swap l) x)
20 t e s t : λ . i f (x) true false
21 }

4. Discussion
4.1 Virtual Values, Security and Observable Behavior
Proxies allow the implementation of additional kinds of val-
ues, and so they increase the possible observable behaviors
of values. For example, in the presence of proxies, x * x

can return a negative number (e.g., when x is complex).
Moreover, (a.x = a.x) could evaluate to false, both be-
cause a is a proxy whose get trap returns different values,
or because a.x is a proxy that defines unusual, non-reflective
behavior for its “=” operation.

A larger space of value behaviors does make it harder to
write defensive or security-critical code. In particular, secu-
rity checks that are correct under the assumption that strings
are immutable may fail when passed a proxy representing
mutable strings.

There is some tension on how to limit the possible ob-
servable behaviors of proxies. A value consumer might want
strict limits on the behavior of values (including proxy val-
ues), while a proxy creator might want maximum flexibility
to introduce novel kinds of proxy behaviors. Consequently,
an important design choice is what restrictions should be
placed on proxy behaviors. For example, Javascript prox-
ies [4] cannot override the identity operator, which therefore
remains an equivalence operation.

In λproxy, we choose to permit proxies to exhibit very
general behaviors, both for simplicity and to facilitate explo-
ration of proxy-based language extensions. To address secu-
rity concerns, we provide an isProxy construct that cannot
be trapped, which then allows value consumers to reliably

Figure 11: Sample web page with a Javascript evaluator running in Firefox

identify proxies and to defend against unwanted proxy be-
haviors.

One convenient way to protect code against unwanted
proxy behavior is by using the NonProxy extension shown
in figure 10. This extension is essentially a membrane, in
that it can sit between two modules and stop values such as
functions or objects from being transmitted from one mod-
ule to the other, and instead sends a proxy in place of that
value. The key difference is that the NonProxy extension for-
bids any attempt to send a proxy across the non-proxy mem-
brane, and so it protects client code from values with strange,
proxy-specific behavior. Thus, for example, the code frag-
ment:

1 swap (identityProxy 4)

is permitted under the revokable membrane of figure 8 but
not under the non-proxy membrane of figure 10.

4.2 Design Principles for Reflective APIs
Bracha and Ungar propose three design principles for reflec-
tive APIs [2], namely encapsulation, stratification, and onto-
logical correspondence.

Proxies satisfy the principle of encapsulation, since the
proxy API does not expose details regarding the underlying
implementation of the language.

Proxies also satisfy the principle of stratification, since
there is a clear distinction between base level values (both
raw values and proxies), and meta-level values (the handler
for a proxy value). In particular, there is no way for a user of
a proxy value to access the underlying handler. Evaluating
(proxy a h)["unary"] does not return the unary trap
function of the handler a; instead it invokes a’s get trap on
the argument "unary".

Finally, proxies satisfy the principle of ontological corre-
spondence, since each trap handler corresponds directly to a
particular operation being performed by code on a (virtual)
data value.

5. Implementation: Firefox and JavaScript
In order to evaluate our approach, we extended this design
for virtual values to the Javascript programming language
and implemented the extended language within the Firefox
browser. Our implementation leveraged the recently devel-
oped Zaphod add-on [21] for Firefox, which is based on
the Narcissus [25] meta-circular Javascript interpreter. Since
JavaScript is a richer language than λproxy, this extension
required the introduction of the following additional traps:

• A has trap to determine if a proxy object has a given
field.
• A construct trap similar to call, but used when the

proxy is called with the new keyword.
• A keys trap to define a proxy value’s behavior in a
for/in loop.

We then implemented several of the language exten-
sion modules, including lazy evaluation, complex numbers,
and units of measure. These implementations were quite
straightforward and helped to validate the utility of our de-
sign. Our modified Narcissus implementation, the proxy ex-
tension modules, and the proxy test code are all available
online [1]. As an illustration, figure 11 shows a web applica-
tion that uses the units of measurement extension.

Performance. As a meta-circular interpreter, Narcissus
does not provide a good foundation for evaluating the perfor-
mance overhead of proxies. However, we believe this over-
head is likely to be quite small for the common case where
traps are not invoked. In a dynamically typed language, the
implementation of each primitive operation typically needs
to perform a tag check that identifies the dynamic type of
each argument value. Figure 12 contains a code snippet
from the SpiderMonkey Javascript interpreter for perform-
ing unary minus. This code contains a fast path for han-
dling integer values, a second fast path for doubles, and then

Figure 12: Tag Checks in SpiderMonkey’s Unary Minus

1 if (JSVAL IS INT(rval)&&(i=JSVAL TO INT(rval))!=0) {
2 // Fast path for ints
3 i = −i;
4 regs . sp[−1] = INT TO JSVAL(i);
5 } else if (JSVAL IS DOUBLE(rval)) {
6 // Second fast path for doubles
7 · · ·
8 } else {
9 · · · // Slow path for handling implicit conversions

10 · · · // Ideal spot for handling proxies
11 · · · // Error handling
12 }

a slow path for handling Javascript’s various implicit con-
versions, error handling, etc. We expect that the slow path
would be an ideal place for incorporating proxy handling,
without introducing any additional overhead on the common
fast paths. Andreas Gal demonstrated that Javascript Catch-
All Proxies introduce negligible overheads for the common
case where traps are not invoked [4, table 2], and he expects
that the performance overhead for virtual values would be
comparably small. Of course, frequent trap invocations (e.g.,
for complex numbers) could introduce significant overhead,
and might motivate the need for additional optimization
techniques. Trace-based compilation could provide highly
optimized code paths that inline trap code into client code
within hot loops [9].

In our current design, a proxy needs a handler record with
nine traps, each of which likely needs to close over the un-
derlying value. More efficient representations are possible.
For example, “proxy a h v” could represent a proxy for the
value v, where the handler h is common to many proxies,
and each trap is passed the underlying value v each time it
is invoked. This alternative representation would reduce the
space required for each proxy from tens of words to perhaps
four words: a header word plus slots for a, h, and v. Over-
all, it appears likely that proxies can be implemented fairly
efficiently, particular in dynamic languages.

6. Future Work
The language extensions presented in Section 3 provide
anecdotal evidence that virtual values provide a flexible and
useful language extension mechanism. In addition, our ex-
perience suggest that virtual values are fairly straightforward
to incorporate into a language implementation, and that pro-
gramming in the extended language remains mostly intuitive
and convenient.

The introduction of virtual values does significantly
change the semantics of the language, and suggests that fur-
ther study of the observable equivalence relation and the
denotational semantics of the language is required. In par-
ticular, a full abstraction result [3] for λproxy would clarify
the space of behaviors that values (including proxy values)

can exhibit, and so might be helpful in deciding how to
design proxy APIs that facilitate security and program veri-
fication, while still providing flexibility to enable interesting
language extensions. More research is also needed on ef-
ficient compilation and optimization techniques for virtual
values.

Virtual values are motivated by the rich proliferation of
research on various kinds of wrappers and proxies, includ-
ing higher-order contracts [5, 6], language interoperation
via proxies [12], and hybrid and gradual typing [7, 23] and
space-efficient gradual typing [24]. We conjecture that vir-
tual values may allow some of this research to be performed
by experimenting within a language with virtual values,
rather than by designing new languages and implementa-
tions.

Acknowledgements We thank David Herman, Tom Van
Cutsem, and Mark Miller for valuable comments on an ear-
lier draft of this paper. This work was supported by NSF
grants CNS-0905650 and CCF-1116883.

References
[1] T. H. Austin. Proxy values implementation and examples.

http://slang.soe.ucsc.edu/proxy-values, 2010.

[2] G. Bracha and D. Ungar. Mirrors: design principles for meta-
level facilities of object-oriented programming languages. In
OOPSLA, pages 331–344, 2004.

[3] R. Cartwright, P.-L. Curien, and M. Felleisen. Fully abstract
semantics for observably sequential languages. Inf. Comput.,
111(2):297–401, 1994.

[4] T. V. Cutsem and M. S. Miller. Proxies: Design principles
for robust object-oriented intercession APIs. In Dynamic
Languages Symposium, 2010.

[5] R. B. Findler and M. Blume. Contracts as pairs of projec-
tions. In International Symposium on Functional and Logic
Programming, pages 226–241, 2006.

[6] R. B. Findler and M. Felleisen. Contracts for higher-order
functions. In Proceedings of the International Conference on
Functional Programming, pages 48–59, 2002.

[7] C. Flanagan. Hybrid type checking. In Symposium on Princi-
ples of Programming Languages, pages 245 – 256, 2006.

[8] M. Flatt and PLT. Reference: Racket. Technical Report
PLT-TR2010-1, PLT Inc., June 7, 2010. http://racket-

lang.org/tr1/.

[9] A. Gal, B. Eich, M. Shaver, D. Anderson, B. Ka-
plan, G. Hoare, D. Mandelin, B. Zbarsky, J. Orendorff,
M. Bebenita, M. Chang, M. Franz, E. Smith, R. Reitmaier,
and M. Haghighat. Trace-based just-in-time type specializa-
tion for dynamic languages. In PLDI, 2009.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, Boston, MA, 1995.

[11] A. Goldberg and D. Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1983.

[12] K. E. Gray, R. B. Findler, and M. Flatt. Fine-grained inter-
operability through mirrors and contracts. In OOPSLA, pages
231–245, 2005.

[13] A. Kennedy. Relational parametricity and units of measure. In
Principles of Programming Languages, pages 442–455, 1997.

[14] G. Kiczales. Aspect-oriented programming. ACM Comput.
Surv., page 154, 1996.

[15] G. Kiczales, J. D. Rivieres, and D. G. Bobrow. The Art of the
Metaobject Protocol. The MIT Press, July 1991.

[16] L. A. Meyerovich, A. P. Felt, and M. S. Miller. Object views:
Fine-grained sharing in browsers. In Proceedings of the WWW
2010, Raleigh NC, USA, 2010.

[17] M. S. Miller. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, Baltimore, Maryland, USA,
May 2006.

[18] M. S. Miller and T. V. Cutsem. Catch-all proxies. http://

wiki.ecmascript.org/doku.php?id=harmony:proxies.

[19] M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency
among strangers: Programming in E as plan coordination. In
In Trustworthy Global Computing, International Symposium,
TGC 2005, pages 195–229. Springer, 2005.

[20] S. Mostinckx, T. V. Cutsem, S. Timbermont, E. G. Boix,
É. Tanter, and W. D. Meuter. Mirror-based reflection in Am-
bientTalk. Softw., Pract. Exper., 39(7):661–699, 2009.

[21] Mozilla labs: Zaphod add-on for the firefox browser.
http://mozillalabs.com/zaphod, accessed October
2010.

[22] Paul Hudak and Simon Peyton-Jones and Philip Wadler (eds.).
Report on the programming language Haskell: A non-strict,
purely functional language version 1.2. SIGPLAN Notices,
27(5), 1992.

[23] J. Siek and W. Taha. Gradual typing for objects. In European
Conference on Object Oriented Programming, pages 2–27,
2007.

[24] J. G. Siek and P. Wadler. Threesomes, with and without blame.
In POPL, pages 365–376, 2010.

[25] Wikipedia: Narcissus JavaScript engine. http://en.wiki-

pedia.org/wiki/ Narcissus (JavaScript engine),
accessed October 2010.

A. Correctness of the Identity Proxy
In this appendix, we provide an illustrative proof that the
identity proxy for a value v simulates the behavior of v,
provided the code does not use the isProxy or unProxy

primitives. In other words, the isProxy and unProxy prim-
itives provide the only way to distinguish between a value
and an identity proxy for that value. (Correctness proofs for
the other language extensions are similar but somewhat more
involved.)

To allow a more direct and cleaner proof, we rewrite the
identity proxy as shown in figure 13, and use

HRv = {call : λy. v y, . . .}

Figure 13: Revised Identity Extesion

1 λx . proxy {} {
2 ca l l : λy . x y
3 getr : λn . x[n]
4 get i : λ r . r [x]
5 se t r : λn ,y . x[n] := y
6 se t i : λr , y . r [x] := y
7 unary : λo . { "-" : λx . −x
8 "!" : λx . !x / / negation
9 isBool : λx . isBool x

10 / / etc for a l l unary ops
11 }[o] x
12 l e f t : λo , r . { "+" : λx ,y . x+y
13 "=" : λx ,y . x=y
14 / / etc for a l l binary ops
15 }[o] x r
16 r ight : λo , l . { "+" : λx ,y . x+y
17 "=" : λx ,y . x=y
18 / / etc for a l l binary ops
19 }[o] l x
20 t e s t : λ . x
21 }

to denote the handler record from figure 13 with x replaced
by the closed value v.

Consider a value v where the heap maps an address
a to the handler record HRv , and consider a proxy value
(proxy c a). Here, c is a heap address (the secret) that is
irrelevant to the correctness argument. We need to show
that proxy c a simulates v in any context C, that is, that
C[proxy c a] simulates C[v]. For this purpose, we define a
simulation relation that relates the evaluations of C[v] and
C[proxy c a]. The evaluation of C[proxy c a] will execute
additional proxy code that will allocate additional records
in the heap. We refer to these proxy-allocated records (in-
cluding HRv) as meta-records, and use G to refer to the meta
portion of the heap.

We first define a simulation relation e1 ∼G e2 on ex-
pressions (with respect to a meta-heap G) as shown in fig-
ure 14. The rule [S-PROXY] states that a value v is simulated
by proxy c a provided G(a) is a handler record HRv′ where
v is in turn simulated by v′. The remaining rules essentially
provide the compatible closure of the [S-PROXY] rule, with
the exception that the isProxy and unProxy primitives are
not permitted (since they would distinguish between a value
and its identity proxy). Note that the relation e1 ∼G e2 is not
reflexive or symmetric.

The simulation relation H1 ∼G H2 on heaps holds if H1

and H2 have the same domain and for all addresses a in this
domain we have:

dom(H1(a)) = dom(H2(a))
∀ w ∈ dom(H1(a)). H1(a)(w) ∼G H2(a)(w)

Finally, the simulation relation (H1, e1) ∼ (H2] G, e2)
relates a state (H1, e1) with another state (H2]G, e2) with
meta-records G, where the heaps and expressions are appro-

Figure 14: Expression Simulation Relation e ∼G e

v ∼G v′ G(a) = HRv′

v ∼G proxy c a
[S-PROXY]

v is a variable, constant, or address
v ∼G v

[S-ID]

e ∼G e′

λx. e ∼G λx. e′
[S-FUN]

e1 ∼G e′1 e1 ∼G e′2
e1 e2 ∼G e′1 e

′
2

[S-CALL]

e1 ∼G e′1 e2 ∼G e′2 e3 ∼G e′3
if e1 e2 e3 ∼G if e′1 e

′
2 e
′
3

[S-IF]

e ∼G e′

uop e ∼G uop e′
[S-UNARY]

e1 ∼G e′1 e2 ∼G e′2
e1 bop e2 ∼G e′1 bop e′2

[S-BINARY]

ef ∼G e′f ev ∼G e′v
{ ef : ev } ∼G { e′f : e′v }

[S-ALLOC]

e1 ∼G e′1 e2 ∼G e′2
e1[e2] ∼G e′1[e

′
2]

[S-GET]

e1 ∼G e′1 e2 ∼G e′2 e3 ∼G e′3
e1[e2] := e3 ∼G e′1[e

′
2] := e′3

[S-SET]

e1 ∼G e′1 e′2 ∼G e′2
proxy e1 e2 ∼G proxy e′1 e

′
2

[S-MK-PROXY]

priately simulated with respect to the meta-records:

(H1, e1) ∼ (H2]G, e2) iff e1 ∼G e2 and H1 ∼G H2

Here, H2] G denotes the union of maps with disjoint do-
mains.

The following lemma shows that this relation∼ is indeed
a simulation relation.

LEMMA 1. Suppose S1 ∼ S2 and S1 → S′1. Then there
exists S′2 such that S2 →+ S′2 and S′1 ∼ S′2.

Proof: We have that

S1 = H1, e1 ∼ H2]G, e2 = S2

where H1 ∼G H2 and e1 ∼G e2. The proof proceeds by
induction and case analysis on the derivation of S1 → S′1
and by a second induction on the derivation of e1 ∼G e2.

• [CALL] In this case

S1 = H1, (λx. e) v → H1, e[x := v] = S′1

Also, S2 = f v′ where λx. e ∼G f and v ∼G v′. This
case proceeds by subcase analysis on λx. e ∼G f .

[S-FUN] For f = (λx. e′) where e ∼G e′ we have:

S2 = H2]G, (λx. e′) v′
→ H2]G, e′[x := v′] [CALL]
= S′2

Thus S′1 ∼ S′2.

[S-PROXY] For f = (proxy c a) where G(a) = HRv′′

and (λx. e) ∼G v′′ we have:

S2 = H2]G, (proxy c a) v′
→ H2]G, a.call v′ [CALLPROXY]
→ H2]G, (λy. v′′ y) v′ [GET]
→ H2]G, v′′ v′ [CALL]
= S′′2

Then (λx. e) v ∼G v′′ v′ by a smaller derivation, so
by induction there exists S′2 such that S′′2 →+ S′2 and
S′1 ∼ S′2.

• [ALLOC] In this case

S1 = H1, { s : v } → H1[a := { s : v }], a = S′1

where a 6∈ dom(H1). Without loss of generality assume
a 6∈ G. Then:

S2 = H2]G, { s : v′ } where v ∼G v′

→ H2[a := { s : v′ }]]G, a [ALLOC]
= S′2

Since we have H1[a := { s : v }] ∼G H2[a := { s : v′ }]
we also have S′1 ∼ S′2.
• [GET] In this case

S1 = H1, a[i] → H1, v = S′1

where v = H1(a)(i). This case proceeds by subcase
analysis on a[i] ∼G e2.

For e2 = a[i] we have:

S2 = H2]G, a[i]
→ H2]G, v′ [GET]
= S′2

where v = H1(a)(i) ∼G H2(a)(i) = v′.

For e2 = (proxy c b)[v′] where G(b) = HRw and
a ∼G w and i ∼G v′ we have:

S2 = H2]G, (proxy c b)[v′]
→ H2]G, b.getr v′ [GETRPROXY]
→ H2]G, (λn.w[n]) v′ [GET]
→ H2]G,w[v′] [CALL]
= S′′2

We have S1 ∼ S′′2 by a smaller derivation, so by
induction there exists S′2 such that S′′2 →+ S′2 and
S′1 ∼ S′2.

For e2 = a[(proxy c b)] where G(b) = HRw and
i ∼G w we have:

S2 = H2]G, a[(proxy c b)]
→ H2]G, b.geti a [GETIPROXY]
→ H2]G, (λq. q[w]) a [GET]
→ H2]G, a[w] [CALL]
= S′′2

We have S1 ∼ S′′2 by a smaller derivation, so by
induction there exists S′2 such that S′′2 →+ S′2 and
S′1 ∼ S′2.

• [SET] In this case

S1 = H1, a[i] = v → H ′1, v = S′1

where H ′1 = H1[a := H1(a)[i := v]]. We proceed by
subcase analysis on (a[i] = v) ∼G e2.

For e2 = (a[i] = v′) where v ∼G v′ we have:

S2 = H2]G, a[i] = v′

→ H ′2]G, v′ [SET]
= S′2

whereH ′2 = H2[a := H2(a)[i := v′]]. Since v ∼G v′

we have H ′1 ∼G H ′2 and S′1 ∼ S′2.

For e2 = ((proxy c b)[w′] = v′) where v ∼G v′ and
G(b) = HRw and a ∼G w and i ∼G w′ we have:

S2 = H2]G, (proxy c b)[w′] = v′

→ H2]G, (b.setr w′ v′); v′ [SETRPROXY]
→ H2]G, (λn, y. w[n] = y) w′ v′; v′ [SET]
→ H2]G,w[w′] = v′; v′ [CALL]
= S′′2

where H ′2 = H2[a := H2(a)[w := v′]]. We have
S1 ∼ S′′2 by a smaller derivation, so by induction
there exists S′2 such that S′′2 →+ S′2 and S′1 ∼ S′2.

For e2 = (a[(proxy c b)] = v′) where G(b) = HRw
and v ∼G v′ and i ∼G w we have:

S2 = H2]G, a[proxy c b] = v′

→ H2]G, (b.seti a v′); v′ [SETIPROXY]
→ H2]G, (λr, y. r[w] = y) a v′; v′ [SET]
→ H2]G, a[w] := v′; v′ [CALL]
= S′′2

where H ′2 = H2[a := H2(a)[w := v′]]. We have
S1 ∼ S′′2 by a smaller derivation, so by induction
there exists S′2 such that S′′2 →+ S′2 and S′1 ∼ S′2.

• [S-UNARY] In this case

S1 = H1, uop r → H1, δ(uop, r) = S′1

This case proceeds by subcase analysis on uop r ∼G e2.

For e2 = uop r′ where r ∼G r′ we have:

S2 = H2]G, uop r′

→ H2]G, δ(uop, r′) [UNARYOP]
= S′2

Thus S′1 ∼ S′2.

For e2 = uop (proxy c a) whereG(a) = HRv, r ∼g v
we have:

S2 = H2]G, uop (proxy c a)
→ H2]G, a.unary "uop" [UNARYPROXY]
→+ H2]G′, uop v G′ ⊃ G
= S′′2

We have S1 ∼ S′′2 by a smaller derivation, so by
induction there exists S′2 such that S′′2 →+ S′2 and
S′1 ∼ S′2.

• [S-BINARY] In this case

S1 = H1, r1 bop r2 → H1, δ(bop, r1, r2) = S′1

This case proceeds by a subcase analysis on the deriva-
tion of (r1 bop r2) ∼G e2.

For e2 = (r′1 bop r′2) where r1 ∼G r′1 and r2 ∼G r′2
we have:

S2 = H2]G, r′1 bop r′2
→ H2]G, δ(bop, r′1, r

′
2) [BINARYOP]

= S′2

Thus S′1 ∼ S′2.

For e2 = ((proxy c a) bop r′2) where G(a) = HRv
and r1 ∼G v and r2 ∼G r′2 we have:

S2 = H2]G, (proxy c a) bop r′2
→ H2]G, a.left r′2 [LEFTPROXY]
→+ H2]G′, v bop r′2 G′ ⊃ G
= S′′2

We have S1 ∼ S′′2 by a smaller derivation, so by
induction there exists S′2 such that S′′2 →+ S′2 and
S′1 ∼ S′2.

For e2 = r′1 bop (proxy c a) where G(a) = HRv and
r1 ∼G r′1 and r2 ∼G v we have:

S2 = H2]G, r′1 bop (proxy c a)
→ H2]G, a.right r′1 [LEFTPROXY]
→+ H2]G′, r′1 bop v G′ ⊃ G
= S′′2

We have S1 ∼ S′′2 by a smaller derivation, so by
induction there exists S′2 such that S′′2 →+ S′2 and
S′1 ∼ S′2.

• [IFTRUE] In this case

S1 = H1, if r e1 e2 → H1, e1 = S′1

where r = true. This case proceeds by subcase analysis
on (if r e1 e2) ∼G e3.

For e3 = (if r e′1 e
′
2) where e1 ∼G e′1 and e2 ∼G e′2

we have:

S2 = H2]G, if r e′1 e′2
→ H2]G, e′1 [IFTRUE]
= S′2

Thus S′1 ∼ S′2.

For e3 = (if (proxy c a) e′1 e
′
2) where G(a) = HRv

and r ∼G v and e1 ∼G e′1 and e2 ∼G e′2 we have:

S2 = H2]G, if (proxy c a) e′1 e
′
2

→ H2]G, if (a.test()) e′1 e
′
2 [TESTPROXY]

→+ H2]G, if v e′1 e′2 [GET], [CALL]
= S′′2

By induction there exists S′2 such that S′′2 →+ S′2 and
S′1 ∼ S′2.

• [IFFALSE] Similar to the previous case.

• [ISPROXY],[NOTPROXY],[UNPROXY],[UNPROXYFALSE] The
simulation relation does not permit the isProxy or
unProxy primitives in e1.
• [CONTEXT] In this case

S1 = H1, E1[e1]→ H ′1, E1[e
′
1] = S′1

where H1, e1 → H ′1, e
′
1. We extend the ∼G relation

from expressions to evaluation contexts in a compatible
manner. In order to have S1 ∼ S2 we must have S2 =
H2] G, e3 where H1 ∼G H2 and E1[e1] ∼G e3. So
∃E2, e2 such that E2[e2] = e3 and E1 ∼G E2 and
e1 ∼G e2. Since

H1, e1 ∼ H2]G, e2
H1, e1 → H ′1, e

′
1

by induction there exists H ′2, e
′
2 such that

H2]G, e2 → H ′2]G, e′2
H ′1, e

′
1 ∼ H ′2]G, e′2

By the [CONTEXT] rule we have

S2 = H2]G,E2[e2]→ H ′2]G,E2[e
′
2] = S′2

and S′1 ∼ S′2.

