
Dynamic Detection of Object Capability Violations
Through Model Checking

Dustin Rhodes
University of California, Santa Cruz

dustin@soe.ucsc.edu

Tim Disney
University of California, Santa Cruz

disnet@soe.ucsc.edu

Cormac Flanagan
University of California, Santa Cruz

cormac@soe.ucsc.edu

Abstract
In this paper we present a new tool called DOCaT (Dynamic Ob-

ject Capability Tracer), a model checker for JavaScript that detects
capability leaks in an object capability system. DOCaT includes an
editor that highlights the sections of code that can be potentially
transferred to untrusted third-party code along with a trace show-
ing how the code could be leaked in an actual execution. This code
highlighting provides a simple way of visualizing the references
untrusted code potentially has access to and helps programmers to
discover if their code is leaking more capabilities then required.

DOCaT is implemented using a combination of source code
rewriting (using Sweet.js, a JavaScript macro system), dynamic be-
havioral intercession (Proxies, introduced in ES6, the most recent
version of JavaScript), and model checking. Together these meth-
ods are able to locate common ways for untrusted code to elevate
its authority.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Debugging aids—optional subject descriptor

General Terms Languages

Keywords JavaScript; object capability; model checking; prox-
ies; tool;

1. Introduction
The object capability model presents a compelling way to build

systems that allow mutually untrusting parties to safely interact by
equating the capability to accomplish a task with obtaining a ref-
erence to a representative object. Object capability systems require
support to prevent unintentional reference leaks. Unfortunately,
many languages lack the necessary language features to safe-guard
references robustly, which makes constructing object capability
systems in those languages challenging.

JavaScript would benefit greatly from object capabilities since
code written by multiple parties running in the same context
is already common (e.g. advertisements and mashups). While a
common practice, consistently safe-guarding object references in
JavaScript is challenging due to the many ways of unintentionally

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DLS ’14, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3211-8/14/10. . . $15.00.
http://dx.doi.org/10.1145/020500041.04020408

leaking object references. Various tools, language subsets, and li-
braries [1, 9, 13] have been built to provide the necessary language
level features that can enable programming in an object capability
world. Even with a sound object capability system in place, it can
be difficult for a programmer working in the object capability sys-
tem to be certain of exactly which capabilities are transferred to a
third party.

In this paper, we present a new tool called DOCaT (Dynamic
Object Capability Tracer), which can systematically check for leaks
in a user’s code. DOCaT includes a text editor that highlights the
sections of code that can be potentially transferred to untrusted
third-party code along with a trace showing how the code could
be leaked in an actual execution. This code highlighting provides
a simple way of visualizing the references to which untrusted code
potentially has access and helps programmers discover if their code
is leaking more capabilities than required.

DOCaT is implemented using a combination of source code
rewriting (using Sweet.js, a JavaScript macro system) and dynamic
behavioral intercession (Proxies, introduced in ES6, the most re-
cent version of JavaScript). Together, these methods are able to
locate common ways for untrusted code to elevate its authority.
First, plain user code is input into the editor. Then, macros rewrite
this code to include a daemon proxy which acts as the untrusted
code as well as model checking hooks. Finally, the rewritten code
is executed by a model checking algorithm which highlights the
leaks it finds.

2. Overview of Object Capabilities in JavaScript
Most websites choose to roll their own security systems and

these systems involve some form of static analysis to restrict the
user code to a subset of JavaScript. Examples of these systems in-
clude Facebook’s API [9], Yahoo’s AdSafe [1], and Google’s Caja
[13]. These range from running on a highly restrictive subset of
JavaScript, as in AdSafe, to standard JavaScript with some libraries
loaded before execution, as in Caja. The overall goal of these is to
provide an easy way to run untrusted code in a trusted environment
while limiting the power of the untrusted code. All of these sys-
tems use some form of object capabilities to accomplish this goal.
Caja especially is meant as a system to ease the writing of object
capability code in JavaScript.

2.1 Object Capabilities
Object Capabilities limit authority through their use of the refer-

ence graph that connects objects. Any object which holds a refer-
ence to another object has the power to use that object’s capabili-
ties.

A key idea in object capability systems is the principle of least
authority (POLA) which means that objects are only given the ca-
pabilities they need and no more. In the context of JavaScript a
capability is equivalent to a reference to an object or function.

Figure 1: Object Capability Mint

1 Object.freeze(Array);
2

3 function makeMint(name){
4 var mint = {
5 var purses = [];
6 makePurse: function (balance){
7 var purse = {
8 getBalance: function(){ return balance;},
9 sprout: function(){

10 return mint.makePurse(0);
11 },
12 decr: function(amount){
13 if(balance-amount<0)return false;
14 balance-=amount;
15 return true;
16 },
17 deposit: function(amount,src){
18 if(!purses.contains(src))) return;
19 if(src.decr(amount)){
20 balance+=amount;
21 }
22 }
23 };
24 Object.freeze(purse);
25 purses.push(purse);
26 return purse;
27 }
28 };
29 return mint;
30 }

A JavaScript object capability system allows mutually untrusting
modules to interact by exchanging only the capabilities (i.e. refer-
ences) that each module needs to accomplish its task.

For example, in the following code snippet the untrusted ob-
ject needs the sendEmail capability so it is passed to the f function
of untrusted.

var untrusted = require(’untrusted’);
var o = {

launchMissles: function() { /* ... */ },
sendEmail: function () { /* ... */ }

};
untrusted.f(o.sendEmail);

Note that untrusted should not have access to the launchMissles
function since it is not explicitly passed as a reference to untrusted.
However, in unrestricted versions of JavaScript there are subtle
methods of implicitly leaking launchMissles that DOCaT can
detect and we will describe in the following sections.

A classic example of the power of object capabilities is shown
in figure 1. A common use case for such code involves two parties:
a bank, who controls the mint, and some users, who have some of
the mint’s currency. The bank can call makeMint which returns a
reference to a mint object. This reference provides the bank with
capabilities to make purses, which hold currency, and generate new
currency. The bank is then free to hand the users references to
purses. When writing such a system, it is important that the bank
not be required to trust the users. No matter how a user manages
their purse reference, the user should not be able to get a reference
to a mint or generate new currency.

2.2 ES5 Strict Mode
Writing object capability code in early JavaScript implementa-

tions, modeled after EcmaScript 3, is an almost impossible task.

Code can easily gain access to the global scope, modify the global
objects, and walk the call stack to get references to objects which it
should not have. EcmaScript 5, and the advent of ’use strict’
in JavaScript, removes many of these possibilities or provides ways
to deactivate them. While many object capability systems choose to
restrict the language further, it is possible to write object capability
code in pure JavaScript strict mode. DOCaT is built to run on strict
mode JavaScript, but no other restrictions to the language are made.

2.3 Object Capability Leaks
Ideally, the programmer of an object capability system should

always know what capabilities the system is providing to untrusted
code. It is clear that any reference handed directly to the untrusted
code is given away, but beyond that it can become difficult to
determine who has access to what. This paper presents a tool
(DOCaT) to easily check for such leaks automatically. Consider
the following examples where important capabilities can become
leaked to untrusted code. In each of these examples, the function
untrustedCode indicates code from an untrusted outside source
that should not be able to gain access to the launchRockets capa-
bility. For simplicity’s sake, all code besides the untrustedCode
function is assumed to be trustworthy.
2.3.1 Leaked Via Global Scope
var capability = launchRockets;
untrustedCode();

function untrustedCode(){
var global = new Function(’return this;’)();
steal(global.capability);

}

In JavaScript it is possible to get access to the global scope
through the Function constructor and eval as seen in the func-
tion untrustedCode. By gaining access to the global scope the
untrusted code can steal the launchRockets capability. To fix this
problem, the programmer needs to overwrite the possible methods
of obtaining global scope, eval and the Function constructor, or
hide their secret inside of a closure.
2.3.2 Leaked Via Return Value
function f(){ return launchRockets; }
untrustedCode(f);

Untrusted code can call functions that are provided to it and gain
access to their return values.
2.3.3 Leaked Via Poisoning Globals
function hide(){
console.log(launchRockets);

}
untrustedCode(hide);

Untrusted code can overwrite globals so that they function as nor-
mal, but also steal references. In this case, console.log can be over-
written by the untrusted code to steal all references passed to it.
Freezing an object prevents any of its members from being modi-
fied. Thus, this attack can be prevented by freezing globals before
using untrusted code.
2.3.4 Leaked Via This Passing
var obj = {

locked:true,
f:function(){

if(!this.locked)return launchRockets;
else return null;

}
};
Object.freeze(obj);
untrustedCode(obj);

function untrustedCode(obj){
var login = obj.f.apply({locked:false},[]);
leak(login);

}

JavaScript’s this binding functions differently than in most clas-
sical object oriented languages. It is possible to pass in an arbitrary
this object when making a function call by using Function.apply.
This possibility means that checks on this, as above, which look
safe are potentially dangerous.
2.3.5 Leaked Via Proxy Setters
var obj = {

f:function(){
this.temp = launchRockets;
//... code which uses temp
this.temp = 0;

}
};
untrustedCode(obj);

Here, it looks as though f never finishes with any sensitive infor-
mation on the this object, so nothing is leaked. However, by using
proxies, control can switch to the untrusted code during the assign-
ment at which point launchRockets is stolen.
2.3.6 Leaked Via Shallow Freeze
var a = {

link:b
};
var b = {

f:function(x){
console.log(x);

}
};
Object.freeze(a);
untrustedCode(a);
var secret = launchRockets;
b.f(secret);

Object.freeze is only a shallow freeze and does not freeze all
objects which are transitively accessible from the frozen object.
Therefore, even if all objects are frozen before passing them to
untrusted code, the untrusted code can still gain read/write access
to other references through them. This leak is fixed by calling
Object.freeze on all accessible objects or by using a deep freeze
function.
2.3.7 Leaked Via Deep Freeze Return
var a = {link:function(){ return b; }};
var b = {f:function(x){console.log(x);}};
DeepFreeze(a);
untrustedCode(a);
b.f(launchRockets);

Even performing a deep freeze before handing references to un-
trusted code is not completely safe from leaking. A deep freeze will
not freeze the results returned by functions. Thus, just as last time,
b does not end up frozen, but the untrusted code can gain access to
it through a.

3. Overview of JavaScript Proxies
Proxies [5] are a key aspect of our implementation of DOCaT,

so we briefly review JavaScript’s proxy interface in this section.
Proxies [17] [6] are a relatively recent addition to JavaScript, which
allow code to define its own custom behavior for objects. Proxies
define custom behavior by converting operations on the object into
function calls called traps.

The JavaScript proxy constructor takes a prototype and a handler

Figure 2: Simple Proxy

var handler = {
get: function(target, name){

return 42;
}
set: function(target, name, value){

target[name]=value+100;
return true;

}
apply: function(target, thisValue, args){

return args.length;
}

}

var proxy = new Proxy(Function,handler);
console.log(proxy.x);//prints 42
console.log(proxy[’y’]);//prints 42

proxy.x = 1; //proxy.x is now 101

console.log(proxy(’a’,2,’b’));//prints 3

for the proxy. The handler is an object which defines the proxies’
traps. One of the most basic pair of traps are the get and set traps,
which define the proxies behavior when it is used as a record. For
example, the get trap in figure 2 will cause the proxy to always
return 42 in response to a property access.

In the get trap, target is the unproxied prototype object and name
is the name of the property being requested. When proxy.x is
evaluated, get is called with target equal to Object and name equal
to the string ’x’. By returning 42 in our get function, any property
accessed on our proxy will return 42.

Set and apply, the other two traps implemented in figure 2,
follow the basic form of get but add some complexity. Set has target
and name which work exactly like get, but adds a value parameter
which is the right-hand side of the assignment operator. The set trap
in figure 2 traps all set commands and sets the property to the value
plus 100.

The last trap in figure 2 is the application trap. It defines behavior
for when the proxy is used as a function, as opposed to a record
including cases of proxy() and also proxy.apply(this,args).
The application trap takes three parameters: the target object, the
binding for this, and the arguments array. In the example proxy,
the application trap just returns the number of arguments it was
passed.

4. Implementation of DOCaT
DOCaT is implemented using three complementary parts. The

first part is a daemon proxy which acts as a stand-in for an un-
trusted source in the object capability code. Second, there is a
macro system in place which is used to add additional hooks to
the source code which in turn are used by the daemon proxy and
model checker. Finally, there is a top level model checker which
exhaustively searches the code for leaks using the daemon proxy
and macro hooks.

4.1 The Daemon Proxy
The daemon proxy, shown in figure 3, is designed to act as an

adversarial untrusted source in object capability code and, as such,
tries to gain a reference to as many capabilities as possible. In all

Figure 3: Daemon Proxy

1 let daemonHandler = {
2 // Traps *.x and always returns daemon.
3 get: function (target, name) {
4 return daemon;
5 },
6 // Traps *.x=y and leaks y.
7 set: function (target, name, val) {
8 explore(val);
9 return true;

10 },
11 // Traps *(x) and x.*(y). X and y are both leaked.
12 apply: function (target, thisValue, args) {
13 explore(args);
14 explore(thisValue);
15 return daemon;
16 }
17 };
18

19 // First create the daemon proxy. The prototype is Function so it can be called.
20 var daemon = new Proxy(Function,daemonHandler);
21 //Keep a list of all explored references.
22 var explored = new WeakMap();
23

24 // Explore does a deep search of target, leaking everything it finds.
25 function explore(target) {
26 // If the target is daemon or has already been explored, then skip it.
27 if(target===daemon || explored.has(target))return;
28

29 // Put the target in the explored map.
30 explored.set(target,true);
31

32 // If target is an object, do a deep search and set all its properties to daemon.
33 if (typeof target == ’object’) {
34 for (var key in target) {
35 explore(target[key]);
36 target[key] = daemon;
37 }
38 }
39 // If target is a function, call the function passing in daemon as this and all parameters.
40 if (typeof target === ’function’) {
41 explore(target.apply(daemon,[daemon]));
42 }
43 // Use the map created by wrap (fig. 4) to highlight the leaked lines.
44 editor.highlight(allocLine.get(target));
45 }

code run through DOCaT, code coming from an untrusted source
is replaced with an instance of the daemon proxy. The key idea of
this daemon proxy is that whenever the daemon gains access to an
object o, it recursively explores all objects transitively accessible
from o, as well as marks the source code where those values were
created as leaked. The daemon acquires these references by imple-
menting traps for get, set, and apply.

The get trap is very straightforward. No matter which property
one attempts to get from the daemon, it always returns a dae-
mon. Any property coming from an untrusted source should also
be untrusted. The get trap works for chained values as well, for in-
stance daemon.x.y evaluates to daemon because daemon.x.y→
daemon.y→ daemon.

If a property is set on the daemon, via the set trap, then the func-
tion explore is called to identify new capabilities transitively ac-
cessible through the assigned value. If the value being explored is
an object, then the daemon recursively calls explore on each of its

properties after which it sets that property equal to daemon. To ex-
plore a function the daemon passes a daemon for the this value of
the function as well as all parameters to the function. In this way,
if the function might leak information to this or any of its param-
eters, the daemon will gain access to them. Any value returned by
the function is explored as well.

Finally, there is the possibility that someone will call the dae-
mon as a function or method and pass in parameters to it. In this
case, the apply trap does a combination of the get and set behavior.
It explores the value this is bound to and also all the arguments
that were passed in, and finally it returns a daemon.

4.2 Proxy Example
To understand how these traps gain access to as many references

as possible, it can be helpful to see a small example in action. The
following is a simple snippet of source code where the untrusted

Figure 4: Binary Operation Trap

//JavaScript proxies can not trap such operations
//so we trap all binary and unary operations
//with sweet.js macros as such.
operator + 12 left {

{ $lhs, $rhs } =>
{ add($lhs,$rhs); }

}
//If either side is a daemon return daemon.
//Otherwise, return the result of the operation.
function add(lhs,rhs){

if(lhs===daemon || rhs===daemon)
return daemon;

else return lhs+rhs;
}

source has been replaced with a reference to the daemon:

1 var x = ’secret1’;
2 var y = ’secret2’;
3 var obj = {
4 prop:x,
5 fun:function(arg){ arg.a = y; }
6 };
7 daemon.fun(obj);

The execution of this code would look like this
daemon.fun(obj)
→ (daemonHandler.get(daemon, ’fun’))(obj)
→ daemon(obj)
→ daemonHandler.apply(daemon, daemon, obj)
→ explore(obj)
→ explore(obj.prop); explore(obj.fun)
At this point ’secret1’ has leaked.
→ explore(obj.fun)
→ explore(obj.fun.apply(daemon, [daemon]))
→ explore(daemon.a = y)
→ explore(daemonHandler.set(daemon, ’a’, y))
→ explore(y)
At this point ’secret2’ has leaked and execution has finished.
Furthermore, all the properties of obj are now set to daemon,
potentially causing more leaks if they continued to be used in other
parts of the program.

4.3 Trapping Operators
Using proxies, the daemon is able to trap all incoming get, set,

and apply operations but can not trap binary and unary operations
such as +, −, or ∗. JavaScript proxies do not offer a way to trap
these operations, so they are instead trapped using macros. These
macros are used to rewrite user code in such a way that the binary
and unary operations can be trapped.

Sweet.js [21] is a macro system written for and in JavaScript.
It is designed to take standard JavaScript code plus macros and
expand the macros within to yield pure JavaScript. Using these
macros, it is possible to alter the behavior of operators. The macro
in figure 4 changes all occurrences of the symbol + into calls to the
function add. For example, it expands the code var z = x + y;
into the code var z = add(x, y);. The function add checks if
either side is a daemon and if so returns a daemon. Otherwise, it
returns the standard result of the operation. All other unary and
binary operators are handled in a similar fashion.

Figure 5: Branch Transform

//trap if calls so we can model check

macro if {
rule{ ($test:expr) { $then ... } }
=> {

if(branch($test)) { $then ... }
}
//Trap all other if cases.
//...

}

4.4 Model Checker Algorithm
The overall goal of DOCaT is to attempt to find all possible

leaks to an untrusted source in the user’s code. If the source code
had no branches, the daemon proxy and macros would be enough
to find all these leaks on their own, however, if the source code
performs a conditional test on a value provided by the untrusted
source, both paths will need to be tested for leaks. To do this, a
model checking algorithm is used to exhaustively check all paths
which the untrusted source has control over for leaks. The sweet.js
macro shown in figure 5 introduces a call to the branch function
whenever there is a conditional test in the target program. Using
these branch calls, it is possible to check all paths of the target
code using a model checking algorithm [4].

In order to run its algorithm, the model checker first appends
the macros to the user’s code where the untrusted source has been
replaced by a daemon reference. The model checker then calls
sweet.compile as seen in line 9 of figure 6. This function returns
expanded code which is pure JavaScript as seen in figure 9. After
the code is expanded, it can then be checked for leaks.

To see how the model checking algorithm works, consider this
example code with branch calls inserted:

1 var d = daemon;
2 if(branch(d.x)){
3 if(branch(d.y)){
4 d.x=’leak1’;
5 }else{
6 d.y=’leak2’;
7 }
8 }

In order to properly check this code for leaks, there are three paths
which must be evaluated, [true, true], [true, false], and
[false]. These three paths are executed by the main loop inside of
the testCode function, shown in figure 6. The model checker uses
two variables to keep track of its execution of the various paths.
The path variable is a list of booleans, which shows the decision
made at each branch point in the current path. This list starts
out empty and gradually fills up as code is evaluated. ifNumber
holds the current position in the path. This number is reset to zero
before each evaluation and will finish each evaluation as being
equal to the length of path. To evaluate one path, the algorithm
resets ifNumber, evaluates the expanded code, then adjusts the
path variable to take a new path for the next evaluation.

The first time through the loop, path will be an empty array
and ifNumber will be 0. At this point, when the model checker
reaches the first call to branch, it must decide which path to
take. In this algorithm, the model checker always explores true
paths first, followed by the false path. The first time reaching a
particular branch, true is returned and added to the path. In this
example, the first time hitting the branch on line 2 and 3 will
return true for this reason. These two returns will cause the model
checker to explore the first path, which is [true, true]. At this

Figure 6: Model Checking

1 // Get the user’s code and append our macros to its beginning,
2 // then macro expand the user’s code using sweetjs.
3 // The proxy handler and all its code is not macro expanded.
4

5 // Path and ifNumber are used by the model checker.
6 var path = [];
7 var ifNumber = 0;// remember which branch we are on
8 function testCode(userCode){
9 var expandedCode = sweet.compile(macros+userCode);

10 //the branches used in model checking
11 do{
12 ifNumber = 0;
13 // run the user’s code, which will fill up the path array
14 // on branches.
15 eval(expandedCode);
16 // Now that path is full pop off all false paths (we
17 // have already gone down the true and false path for them) and
18 // change the last true to be false.
19 while(path[path.length-1]==false && path.length>0){
20 path.pop();
21 }
22 if(path.length>0) path[path.length-1]=false;
23 }while(path.length>0);
24 // If path is empty we’ve explored all paths so
25 // we are done.
26 }
27

28

29 function branch(test){
30 if(test!==daemon) return test;
31 // Do model checking.
32 ifNumber++;
33 // The first time hitting a branch pick true.
34 if(ifNumber>path.length){
35 path.push(true);
36 }
37 // Return the choice our model checker tells us to.
38 return path[ifNumber-1];
39 }

point, ’leak1’ is leaked and the evaluation terminates. DOCaT has
gained some knowledge on what is leaked, but the model checker
is not done yet as it has two more paths to evaluate.

After one evaluation of the user code, a new path is generated by
flipping the last choice to a false. If the last choice is already false,
then it is popped off and the new last choice is considered. With a
new path generated, the user code must be evaluated again. In this
way, after exploring the [true, true] path, the algorithm moves
onto the [true, false] path and finally the [false] path. At
this point, all paths in the user code have been explored and any
reference that leaked on any path is highlighted.

4.5 Allocating Line Numbers
Having found a leak, it is important to correctly display the leak.

To show which references have leaked, DOCaT highlights the line
number in which the leaked reference was created. Finding these
line numbers is accomplished using the macro shown in figure 7.
While the code may seem confusing, its purpose is simple. Since
the values that are leaked are always created with an assignment
operator, the macro also runs on an assignment operator.

Every time the macro sees an assignment operator, the macro
grabs the equals symbol and whatever occurs after it, up until a
semicolon. To get an integer for the line number, the macro uses

the line number on which the assignment operator is located. The
macro then takes everything that occurred to the right of the equals
sign and passes it into a function, called wrap, along with the
line number. Wrap creates a weak map associating objects to line
numbers. When a new call to wrap is made, it adds the object to
the map with the associated line number and returns the object.

Now, if that object is ever leaked somewhere later in code,
the daemon can tell which line number it was initially assigned
on by looking it up in wrap’s table. This allows the daemon to
highlight the correct line number in the editor. To illustrate these
various macro transformations, figure 8 shows some JavaScript
source code, with the expanded code in figure 9 including the calls
to wrap, add, and branch. These figures make it clear how the
macros alter the input code.

4.6 Additional Complexities
JavaScript is a large and complicated language, and while the

implementation described above catches most errors, there are a
couple other edge cases which are implemented in the working
version but are not shown in the simplified sample code. One such
edge case is the possibility for an untrusted source to get access to
the global scope using the Function constructor or eval.call in
JavaScript [22].

Figure 7: Variable Wrapping

// Whenever there is an assignment, we record
// the line number so if the object that was
// assigned is leaked we can highlight its
// original location.
let (=) = macro{

case { $assignSym $after ...; } =>
{
// Get the line number of the = sign.
var line =

(#{$assignSym}[0].token.sm_lineNumber);
// Create a token representing
// the line number.
letstx $number = [makeValue(line,

#{$assignSym})];
return #{= wrap($after ...,$number)};

}
}$

// A weak map holds the line numbers for
// all objects.
var allocLine = new WeakMap();
function wrap(obj, line){

// Handle primitive cases not shown.
allocLine.set(obj,line);
return obj;

}

Figure 8: Input Code

1 var x = ’secret’;
2 var y = x.length() + 3;
3 if(y){
4 console.log(y);
5 }

Figure 9: Compiled Code

1 var x = wrap(’secret’,1);
2 var y = wrap(add(x.length(), 3), 2);
3 if(branch(y)){
4 console.log(y);
5 }

To simulate an untrusted source getting access to global, as soon
as the first daemon object is loaded into user code, it tries to grab
the global scope using both the Function constructor method and
the eval method. If either of these work, it passes the global scope
to explore. This attack can be prevented, as is done in CAJA, by
overwriting the Function constructor (along with the ways of get-
ting a hold of it such as the prototype Function’s constructor value)
and eval.call method to a safe alternative before loading unsafe
code.

A similar attack can be performed on JavaScript’s built-in global
variables. An untrusted source can attempt to overwrite commonly
used built-in globals with its own adversarial versions as soon as it
gains control [11]. Again, the first time a daemon is loaded, it at-
tempts to overwrite all globals while preserving their functionality.

JavaScript provides a way to prevent the overriding of object
properties through freezing the object. An object is frozen by pass-
ing the object to be frozen to the built in method Object.freeze.
A frozen object can have its properties viewed but not modified.
By freezing the global objects before the untrusted source has a
chance to edit them, it is possible to prevent the untrusted source

Figure 10: DOCaT Screen Shot

from overwriting the built-in globals.
Finally, DOCaT must take into account that some variables

which are leaked are already frozen. If the daemon receives a
frozen object, attempting to overwrite its properties with daemons
will fail. The daemon can, however, continue to explore the object.
In the daemon’s highlighting, it uses two colors: red to represent
something which is leaked and unfrozen, offering read and write
access, and yellow to represent leaked frozen objects which only
provide read access.

5. Validation
5.1 Examples

Now that the inner workings of DOCaT have been explained, it
is helpful to see specific examples of its use. It is possible to test all
the examples seen in the introduction of this paper using this tool
by simply replacing instances of untrustedCodewith daemon and
running the code through DOCaT. To illustrate how the tool works,
recall this example from the introduction.
5.1.1 Leaked Via This Passing
untrustedCode = daemon;
var obj = {

locked:true,
f:function(){

if(!this.locked)return launchRockets;
else return null;

}
};
Object.freeze(obj);
untrustedCode(obj);

When the daemon is handed obj, it will call the function f during
its exploration of obj. When it calls f, it will pass in daemon
for this as well as for all parameters. Thus, inside the func-
tion if(!this.locked) will evaluate to if(!this.daemon)
which will evaluate down to just if(daemon). This branch is on
a daemon so both paths will be executed, the true path leaking
launchRockets. A screen shot of this code being analysed by
DOCaT is shown in figure 10.
5.1.2 Mint

A mint, shown in the introduction in figure 1, is often used as
an example case of the power of object capabilities. MakeMint is
used to generate mint references, presumably for a bank. Once the
bank has a mint reference, the bank can make purses for that mint

and create currency. If a user has a purse, the user can also make
more purses, but the user can not create currency. If the user has
two purses, they can deposit money from one to the other, but the
user should not be able to create new money. The mint shown in
figure 1 is a working version of a mint without leaks in JavaScript.

Figure 12 shows some of the possible errors a programmer could
make when writing their mint. These errors mean a user could gain
capabilities that only the bank should have. The first error simply
removes the freezing of Array. If this line is removed, the user can
edit Array.push which causes a leak on line 23. This edit leads
to leaking the purse’s array to the user, as well as any purse later
created by the mint.

For the second example, a single-letter change freezes the entire
array of purses instead of the individual purse that is returned by
makePurse. However, without the freeze, the user can modify the
properties of the purse including the purse.decr method. The fact
that decr is controlled by the user means that the call to decr
on line 17 is highlighted as an unsafe branch. Since this branch
protects the balance adjusting code, an unsafe branch here means
the user will be able to create money.

Finally, consider a different strategy for verifying that two purses
belong to the same mint. It would be natural, to add a checkMint
function which takes a mint and verifies that its mint matches the
incoming mint. Making this change seems safe, as purse is frozen
so the user can not tamper with its functions to change checkMint
into something dangerous. However, the user may not find such
tampering necessary, as they can simply pass in a fake object which
has an unsafe checkMint function. Then, when checkMint is
called on this fake object, the user will be handed a reference to
the purse’s mint, granting them all the capabilities of the bank.
5.1.3 Membranes

Membranes are often used when writing object capability code
[16]. In object capability code, it is important to control who has
access to which references. Simply handing over a reference to an-
other source often provides too much control to that source. Thus,
it is common to place a membrane around the reference before it
is passed to untrusted code. Wrapping a reference in this way al-
lows the owner certain abilities, such as the ability to revoke the
reference later, as the membrane shown in figure 11 does. When
writing a membrane, it is important that the untrusted source can
only access references which are wrapped in a membrane.

Even when writing a simple membrane such as the one in figure
11, there are some complexities that might not be immediately ob-
vious. For example, it might not seem necessary to write a set trap.
It is quite obvious that any references coming out of the membrane
will need to be wrapped, but it is less clear that references going in
must be as well. By itself, an untrusted source putting references
into the wrapped object is unable steal any references, but as soon
as the owner of the object tries to use it, it is possible that the un-
trusted code could run and pass the untrusted source an unwrapped
reference. This attack is prevented by wrapping all incoming refer-
ences in the set trap, so if these references are ever run, they will
be wrapped by the membrane.

It also might seem like there is no need to wrap the incom-
ing this argument on an apply trap. If functions could only be
called using dot syntax, the this argument would always be the
expected object, so there would be no need to wrap it. However,
if this is not wrapped, the untrusted code can call the function
using Function.apply and pass in an arbitrary this object. If
the this object is used to store references, these references could
be assigned to the passed in this object which could report them
back to the untrusted code, all without ever passing through a mem-
brane.

Leaks such as these can be found using DOCaT. So far, there
has only ever been one source of unknown actions. Here, there are

Figure 11: Revocable Membrane

1 function makeMembrane(initTarget){
2 var enabled = true;
3

4 var handler = {
5 get: function (target, name){
6 if(!enabled)throw new Error(’revoked’);
7 return wrap(target[name]);
8 },
9 set: function (target, name, val){

10 if(!enabled)throw new Error(’revoked’);
11 target[name] = wrap(val);
12 return true;
13 },
14 apply: function (target, thisValue, args){
15 if(!enabled)throw new Error(’revoked’);
16 var result = target.apply(wrap(thisValue),
17 args.map(wrap));
18 return wrap(result);
19 }
20 };
21

22 function wrap(target){
23 return new Proxy(target,handler);
24 }
25

26 return {
27 wrapper: wrap(initTarget),
28 revoke: function(){ enabled = false;}
29 }
30 }

two: the code which has a reference wrapped in the membrane, and
the untrusted code which will be passed this membrane. The im-
portant feature of a membrane is that these two sources should not
touch. Here two daemons represent these two sources: daemon1
represents the untrusted source that the membrane will be handed
to and daemon2 represents the user code which the membrane will
be wrapping. The membrane code can then be tested with the code
daemon1(makeMembrane(daemon2)).

5.2 Performance
DOCaT runs well on all of the examples given in this paper and

checks them all for leaks in under 200 milliseconds each. There
are three performance considerations to keep in mind when run-
ning DOCaT. First, there is a compilation step where the sweet.js
macros are appended to the input code and then compiled using
sweet.js.

The second issue is the added complexity of the compiled code
in comparison to the source code. This complexity amounts to bi-
nary operations, unary operations, and branches being replaced
with function calls, some objects being replaced by the daemon
proxy, and the time it takes to explore the leaked reference graph.
The replacement of simple operations with function calls adds a
linear amount of time to program execution. The daemon proxies
add to execution time because the proxy API is relatively new and
therefore has not been heavily optimized. As the proxy API ages,
the daemon proxy speed should rise. The time it takes to explore
the reference graph depends heavily on how much is leaked to the
daemon. The principle of least authority [20] states that as few ref-
erences as possible should be given to an untrusted source so, in
most cases, the number of references leaked to the daemon will be
relatively small compared to the total number of references.

Finally, there is the model checking portion of DOCaT. The

Figure 12: Examples

Example Patch Leaked Lines Error
Caught

Mint 1:/ Object.freeze(Array)/ Line 5: purses
Line 7: purse

X

Mint 22: Object.freeze(purses); Line 7: purse
Line 17: branch

X

Mint 5: // var purses = [];
16: if(src.checkMint(mint))

7:

var purse = {
checkMint: function(otherMint){
if(mint===otherMint)return true;
else return false;

}

Line 4: mint X

Membrane 9: // set: function(target,thisValue,args) Line 30: obj X
Membrane 16: var result = target.apply(thisValue... Line 30: obj X
2.3.1 Leaked Via
Global Scope

as is launchRockets X

2.3.2 Leaked Via Re-
turn Value

as is launchRockets X

2.3.3 Leaked Via Poi-
soning Globals

as is launchRockets X

2.3.4 Leaked Via This
Passing

as is launchRockets X

2.3.5 Leaked Via Proxy
Setters

as is launchRockets X

2.3.6 Leaked Via Shal-
low Freeze

as is launchRockets X

2.3.7 Leaked Via Deep
Freeze Return

as is launchRockets X

model checking adds significant time as the entire compiled code
needs to be executed multiple times depending on the number of
untrusted branches. In the worst case, the model checking can in-
crease evaluation time exponentially. However, because object ca-
pability code usually attempts to limit its use of untrusted code
there should not be a large number of branches on untrusted ob-
jects, therefore the exponential explosion, which is theoretically
possible, should not happen in practice.

5.3 Limitations
While DOCaT can catch most leaks that may happen in a pro-

gram, there are a few that slip by it. Most of these leaks theoreti-
cally can be caught, but would require significantly more complex-
ity in the model checker and would have a prohibitively long run
time. Finding ways to address these problems without increasing
run time beyond a useful length or introducing too many false pos-
itives is an important area for future research on this subject. The
simplest leaks that slip by DOCaT are a classic problem in model
checking, looping on an unknown value. The model checker can
pick an arbitrary number of times to run the loop, but there could
always be a leak that happens only on the next loop iteration. If
we actually wanted to fix this problem, the model checker would
need to label all variables that change inside of an adversarial con-
trolled loop as adversarial themselves. The model checker can not
determine the number of times the loop runs, so it can not know
the results of these variables. By propagating these new unknowns

through the program, the model checker could still catch all leaks
due to loops, but would introduce false positives.

Similar to this problem, but slightly more subtle, is the prob-
lem of what order to execute leaked functions in. Theoretically, the
order the daemon executes them in could cause different leaks to
occur. To solve this problem, the daemon would ideally have to
execute all leaked functions in all possible orders. This kind of ex-
ecution takes drastically too much time and in practice, these leaks
do not occur with much frequency. Alternatively, the problem could
also be addressed by taking into account which variables the dae-
mon has indirect control over and assuming these as adversarial
unknowns. This would require a more complicated macro system
as well as introduce some more false positives.

Finally, there is the issue of functions which behave differently
depending on the number of parameters passed in. A function could
check to see if the 100th argument was undefined and, if it was not,
then leak. The daemon can see how many arguments a function ex-
pects by looking at its length property, however, there is no way
to know if it will act differently if the daemon passes in a different
number of parameters. One could eliminate this problem by forbid-
ding use of the arguments array, but running on standard JavaScript
has been determined to hold greater priority.

These leaks prevent us from being able to guarantee that all pos-
sible leaks will be caught by DOCaT. Fixing these leaks, while
keeping execution at a reasonable speed and not introducing too
many false positives, is important for future research.

6. Related Work
This work draws greatly on proxies, model checking, and ob-

ject capabilities. The JavaScript proxy work done by Miller and
Van Cutsem [17] [6], as well as by T.H. Austin. [2], provide the
basis for the JavaScript proxies used by this paper. Proxies such
as these have been implemented in various other languages, such
as Racket’s surrogates [10] and Smalltalk [12] and Python’s [24]
doesNotUnderstand method as well as the language E [19] which
is also written with object capabilities in mind.

The use of proxies in model checking algorithms is previously
done by Alessandro Bruni [4]. Other abstract execution papers also
aided in the creation of the model checking algorithm. [23]

Mark Miller’s work in his thesis [16], papers [18], and Google’s
Caja [13] are an important foundation for work on Object Capabil-
ities in JavaScript. Sophia Drossopoulou and James Noble [8] out-
line why there is a need for object capabilities in the web world and
also, some of the current difficulties with writing object capability
code. Maffeis’ paper [15], also helps to define why object capabil-
ities are a good choice for interaction over the internet. Google’s
Caja [13] displays the difficulty of writing object capability code in
EcmaScript 3, but the viability of writing it in EcmaScript 5.

Adam Barth [3] and Vineeth Kashyap [14] both deal with Object
Capability leaks in JavaScript code but do so from a browser per-
spective and guard against cross-origin JavaScript capability leaks
specifically. Christos Dimoulas [7] describes a different way of ver-
ifying object capability code using contracts and information flow
theory to check capabilities at run time.

7. Conclusion
Object Capability code provides a simple framework for inter-

action between trusted and untrusted code. While the framework
is simple, the possibility for untrusted code to act as a malicious
attacker means that object capability code must strive to eliminate
any means by which the untrusted code can upgrade its authority.
In an object capability system, upgrading authority means obtain-
ing references to new capabilities. DOCaT provides a simple way
that such leaks could be spotted in object capability code before
deployment.

8. Bibliography
References

[1] Adsafe. http://www.adsafe.org/, accessed June 2014.

[2] T. H. Austin, T. Disney, and C. Flanagan. Virtual values for language
extension. SIGPLAN Not., 46(10):921–938, Oct. 2011.

[3] A. Barth, U. Berkeley, J. Weinberger, and D. Song. Cross-origin
javascript capability leaks: Detection, exploitation, and defense. In
Proc. of the 18th USENIX Security Symposium (USENIX Security
2009), 2009.

[4] A. Bruni, T. Disney, and C. Flanagan. A peer architecture for
lightweight symbolic execution. 2013.

[5] T. V. Cutsem and M. S. Miller. Trustworthy proxies: Virtualizing
objects with invariants. In ECOOP 2013, 2013.

[6] T. V. Cutsem and S. Miller. Proxies: Design principles for robust
object-oriented intercession APIs. In Dynamic Languages Symposium,
2010.

[7] C. Dimoulas, S. D. Moore, A. Askarov, and S. N. Chong. Declarative
policies for capability control. Institute of Electrical and Electronics
Engineers, 2014.

[8] S. Drossopoulou and J. Noble. The need for capability policies. In
Proceedings of the 15th Workshop on Formal Techniques for Java-
like Programs, FTfJP ’13, pages 6:1–6:7, New York, NY, USA, 2013.
ACM.

[9] FacebookAPI. https://developers.facebook.com/docs/
reference/php/facebook-api/, accessed June 2014.

[10] M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR2010-
1, PLT Inc., June 7, 2010. http://racket\-lang.org/tr1/.

[11] Global object poisoning. http://code.google.com/p/
google-caja/wiki/GlobalObjectPoisoning, accessed June
2014.

[12] A. Goldberg and D. Robson. Smalltalk-80: the language and its imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1983.

[13] Caja. http://code.google.com/p/google-caja/, accessed
June 2014.

[14] V. Kashyap and B. Hardekopf. Security signature inference
for javascript-based browser addons. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO ’14, pages 219:219–219:229, New York, NY, USA,
2014. ACM.

[15] S. Maffeis, J. Mitchell, and A. Taly. Object capabilities and isolation
of untrusted web applications. Dep. of Computing, Imperial College
London, Technical Report DTR10-04, 2010.

[16] M. S. Miller. Robust Composition: Towards a Unified Approach to
Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, 2006.

[17] M. S. Miller and T. V. Cutsem. Catch-all proxies. http://wiki.
ecmascript.org/doku.php?id=harmony:proxies.

[18] M. S. Miller, T. V. Cutsem, and B. Tulloh. Distributed electronic rights
in javascript. ESOP’13 22nd European Symposium on Programming,
2013.

[19] M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency among
strangers: Programming in E as plan coordination. In In Trustworthy
Global Computing, International Symposium, TGC 2005, pages 195–
229. Springer, 2005.

[20] M. S. Miller, B. Tulloh, and J. S. Shapiro. The structure of authority:
Why security is not a separable concern. In Proceedings of the
Second International Conference on Multiparadigm Programming in
Mozart/Oz, MOZ’04, pages 2–20, Berlin, Heidelberg, 2005. Springer-
Verlag.

[21] Sweet.js. http://http://sweetjs.org/, accessed June 2014.
[22] Global scope reachable via this. http://code.google.com/p/

google-caja/wiki/GlobalScopeViaThis, accessed June 2014.
[23] S. Tobin-Hochstadt and D. Van Horn. Higher-order symbolic execu-

tion via contracts. SIGPLAN Not., 47(10):537–554, Oct. 2012.
[24] G. van Rossum and F. Drake. Python Reference Manual. PythonLabs,

Virginia, USA, 2001.

