
Contracts for Async Patterns in JavaScript

Tim Disney Cormac Flanagan

Abstract
1. Introduction
Behavioral contracts are widely used in programming
languages including Eiffel [1], Scheme/Racket [2], and
JavaScript [3–6] to specify and enforce the dynamic behav-
ior of programs. Much of the work done recently in contract
systems has been in extending the expressive power of con-
tracts, for example to handle polymorphic specifications [7]
or integrate with types [8].

In prior work, we proposed a general contract framework
for specifying and enforcing higher-order temporal proper-
ties [9]. Here, we present several specific contracts that ad-
dress common temporal patterns found in JavaScript pro-
grams.

Core to JavaScript’s notion of temporality is the event
loop. JavaScript has no preemptive multithreading and all
events run to completion. While the run-to-completion se-
mantics of JavaScript is easier to reason about than threads,
there is still plenty of room for surprising temporal bugs to
bite.

One example of a temporal bug (as described in Effective
JavaScript [10]) is an API that confuses synchronous from
asynchronous calls. For example, consider the following API
for a node.js program that provides a caching layer in front
of file access:

var readFile = require("fs").readFile;
var cache = new Map();

function readCaching(fileName, onsuccess) {
if (cache.has(fileName)) {

onsuccess(cache.get(fileName));
}

readFile(fileName, ’utf8’, function(err, data) {
cache.set(fileName, data);
onsuccess(data);

});
}

At first glance this function seems fine, it calls the
onsuccess callback on a cache hit otherwise it first calls

[Copyright notice will appear here once ’preprint’ option is removed.]

the underlying platform’s asynchronous readFile function
before invoking onsuccess. The subtle problem here is that
sometimes onsuccess is called on a following turn of the
event loop (when the cache is empty) and sometimes on the
same event (when there is a cache hit). This means that
code expecting readCaching to be asynchronous may have
inconsistent state. Consider:

var obj = {};
readCaching("foo.txt", function(data) {

obj.totalLength += data.length;
});
readCaching("bar.txt", function(data) {

obj.totalLength += data.length;
});
obj.totalLength = 0;

If none of the files are in the cache this works just fine
but if there are any cache hits the shared object will not
have completed initializing before the readCaching callback
is invoked and obj.totalLength will be undefined. The user
of readCaching is expecting the callbacks to be invoked on
a subsequent turn of the event loop.

2. Async Contracts
To address this problematic temporal behavior we add async
contracts to contracts.js, a higher-order JavaScript contract
library. Contracts.js uses sweet.js [11], a macro system for
JavaScript, to provide expressive syntax support around a
runtime contract library and thus allows us to rewrite our
problematic example as:

var readFile = require("fs").readFile;
var cache = new Map();

@ (Str, (Str) ~> ()) -> ()
function readCaching(fileName, onsuccess) {

if (cache.has(fileName)) {
onsuccess(cache.get(fileName));

}

readFile(fileName, ’utf8’, function(err, data) {
cache.set(fileName, data);
onsuccess(data);

});
}

The @ wraps readCaching in a function contract (written
->) that takes two arguments, a string (Str) and an async
contract ((Str) ~> ()) that takes a string and returns
undefined. The key behavior that an async function contract
enforces is that the function must not be invoked on the
current turn of the event loop. Since readCaching does not
obey this specification on a cache hit that synchronously

1 2015/3/24



invokes onsuccess the contract with throw an error blaming
readCaching.

To implement this async contract we need a way to reify
the event loop. A simple way to represent the event loop is to
have a unique identifier for each loop that an async contract
can inspect. Then the process of checking for async/sync
behavior can proceed as follows:

1. A function with an async parameter is called
2. Wrap the async parameter in its contract
3. Record the event loop id in which the wrapping took

place
4. When the wrapped async parameter is invoked:

• if the current loop id is equal to recorded loop id then
raise blame

• otherwise continue execution

An example implementation of this for just asynchronous
checking (ignoring the domain and range contracts) would
look something like this:

function async(f) {
var loopId = getLoopId();
return function() {

if (getLoopId() === loopId) {
throw new Blame("Called synchronously");

}
// invoke the function normally
return f.apply(this, arguments);

};
}

While the function getLoopId() does not exist in
JavaScript most JavaScript environments provide the means
for us to implement getLoopId() ourselves. In particular
node.js provides the function process.nextTick(cb) that
invokes its callback before the next turn of the event loop.
This allows us to implement getLoopId() directly; each
time getLoopId is called the current loop id is returned
and process.nextTick is used to queue up a callback that
increments loopId before the next turn of the event loop
occurs:

var loopId = 0;
function incLoopId() { loopId++; }
function getLoopId() {

process.nextTick(incLoopId);
return loopId;

}

In browser environments nextTick is not available but
the setImmediate function could be used to a similar ef-
fect however it is only available in certain browsers and
its standardization is contested. In any event, polyfills for
setImmediate exist1 that take advantage of clever tricks us-
ing postMessage (a function meant for cross-document mes-
saging) and web workers.

Unsurprisingly it is straightforward to implement the
dual of an async contract, a sync contract where the function
must be invoked on the same turn of the event loop:

function sync(f) {
var loopId = getLoopId();

1 https://github.com/YuzuJS/setImmediate

return function() {
// !== instead of === for async
if (getLoopId() !== loopId) {

throw new Blame("Called asynchronously");
}
// invoke the function normally
return f.apply(this, arguments);

};
}

The only change required is that the loop id when the
function is invoked must be the same as when the function
was wrapped in the sync contracts for it to pass. It is also
straightforward to implement a contract that checks that
its argument is consistently used either synchronously or
asynchronously by checking how it was used the first time
and then consistently enforcing the same behavior.

References
[1] Bertrand Meyer. Eiffel: The Language. Prentice-Hall 1991,

1991.
[2] Robert Bruce Findler and Matthias Felleisen. Contracts for

higher-order functions. In Proceedings of the seventh ACM
SIGPLAN international conference on Functional program-
ming, pages 48–59. ACM, 2002.

[3] Matthias Keil and Peter Thiemann. Efficient Dynamic Ac-
cess Analysis Using JavaScript Proxies. arXiv.org, pages 49–
60, December 2013.

[4] Peter Thiemann and Matthias Keil. TreatJS: Higher-
Order Contracts for JavaScript.

[5] sefaira/rho-contracts.js.
[6] Tim Disney. Contracts.js.
[7] Arjun Guha, Jacob Matthews, Robert Bruce Findler, and

Shriram Krishnamurthi. Relationally-parametric polymor-
phic contracts. In Proceedings of the 2007 symposium on
Dynamic languages - DLS ’07, pages 29–40, New York, New
York, USA, October 2007. ACM.

[8] J G Siek and W Taha. Gradual typing for functional lan-
guages. Scheme and Functional Programming, pages 81–92,
2006.

[9] Tim Disney, Cormac Flanagan, and Jay McCarthy. Tem-
poral higher-order contracts. In ICFP ’11: Proceedings of
the 16th ACM SIGPLAN international conference on Func-
tional programming, pages 176–188, New York, New York,
USA, September 2011. ACM Request Permissions.

[10] David Herman. Effective JavaScript. 68 Specific Ways to
Harness the Power of JavaScript. Addison-Wesley, November
2012.

[11] Tim Disney, Nathan Faubion, David Herman, and Cormac
Flanagan. Sweeten your JavaScript: hygienic macros for
ES5. In DLS ’14: Proceedings of the 10th ACM Symposium
on Dynamic languages, pages 35–44, New York, New York,
USA, October 2014. ACM Request Permissions.

2 2015/3/24


	Introduction
	Async Contracts

